scholarly journals Inhibitors of Mitogen-Activated Protein Kinases Downregulate COX-2 Expression in Human Chondrocytes

2005 ◽  
Vol 2005 (5) ◽  
pp. 249-255 ◽  
Author(s):  
Riina Nieminen ◽  
Sari Leinonen ◽  
Aleksi Lahti ◽  
Katriina Vuolteenaho ◽  
Ulla Jalonen ◽  
...  

Inducible prostaglandin synthase (cyclooxygenase-2, COX-2) is expressed in rheumatoid and osteoarthritic cartilage and produces high amounts of proinflammatory prostanoids in the joint. In the present study we investigated the effects of the inhibitors of mitogen-activated protein kinase (MAPK) pathways Erk1/2, p38, and JNK on COX-2 expression and prostaglandin E2(PGE2) production in human chondrocytes. Proinflammatory cytokine IL-1βcaused a transient activation of Erk1/2, p38, and JNK in immortalized human T/C28a2 chondrocytes and that was followed by enhanced COX-2 expression and PGE2production. PD98059 (an inhibitor of Erk1/2 pathway) suppressed IL-1-induced COX-2 expression and PGE2production in a dose-dependent manner, and seemed to have an inhibitory effect on COX-2 activity. SB203580 (an inhibitor of p38 pathway) but not its negative control compound SB202474 inhibited COX-2 protein and mRNA expression and subsequent PGE2synthesis at micromolar drug concentrations. SP600125 (a recently developed JNK inhibitor) but not its negative control compound N1-methyl-1,9-pyrazolanthrone downregulated COX-2 expression and PGE2formation in a dose-dependent manner. SP600125 did not downregulate IL-1-induced COX-2 mRNA expression when measured 2 h after addition of IL-1βbut suppressed mRNA levels in the later time points suggesting post-transcriptional regulation. Our results suggest that activation of Erk1/2, p38, and JNK pathways belongs to the signaling cascades that mediate the upregulation of COX-2 expression and PGE2production in human chondrocytes exposed to proinflammatory cytokine IL-1β.

2013 ◽  
Vol 8 (4) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Pornanong Aramwit ◽  
Pasarapa Towiwat ◽  
Teerapol Srichana

Silk sericin was found to suppress the production of pro-inflammatory cytokines, which are related to the inflammatory reaction. The objectives of this study were to investigate the anti-inflammatory effect of sericin in vivo using the carrageenan-induced rat edema model and changes in the histology of tissues. The effects of sericin on the expression of COX-2 and iNOS were also evaluated. Sericin solutions at 0.004-0.080 mg/mL were applied topically to the top of the hind paw and carrageenan (1.0 mg) was injected subcutaneously to the plantar surface of the right hind paw. Our results indicated that sericin significantly reduced the inflammation in rats’ paw compared with the negative control (water and acetone) and its effect at 0.080 mg/mL was only slightly lower than that of 1.0% w/v indomethacin. Similar numbers of polymorphonuclear and macrophage cells were found in rats’ tissue treated with indomethacin and sericin solution, while the numbers were significantly higher in their absence. The gene expression results by RT-PCR showed that the COX-2 and iNOS genes were down-regulated in samples treated with sericin in a dose dependent manner. These data indicated that the anti-inflammatory properties of sericin may be partly attributable to the suppression of the COX-2 enzyme and nitric oxide production.


2017 ◽  
Vol 62 (No. 2) ◽  
pp. 58-66 ◽  
Author(s):  
J.-L. Li ◽  
Y.-Q. Xu ◽  
B.-L. Shi ◽  
D.-S. Sun ◽  
S.-M. Yan ◽  
...  

The effects of chitosan on immune function via arachidonic acid (AA) pathway in weaned piglets were investigated. A total of 180 piglets (Duroc × Yorkshire × Landrace) were randomly assigned to 5 dietary treatments and fed a basal diet supplemented with 0 (control), 100, 500, 1000, and 2000 mg chitosan/kg feed, respectively. Results showed that serum AA, prostaglandin E2 (PGE2), and leukotriene B4 (LTB4) contents in piglets were increased in a linear or quadratic dose-dependent manner with increasing chitosan on day 28 (P < 0.05). Chitosan increased serum cytosolic-phospholipase A2 (cPLA2) activity in a linear or quadratic dose-dependent manner on day 14 or 28, and improved 5-lipoxygenase (5-LOX) activity in a linear manner and cyclooxygenase-2 (COX-2) activity quadratically on day 28 (P < 0.05). Moreover, chitosan elevated gene expression of cPLA2 mRNA quadratically in the small intestine on days 14 and 28, increased the COX-2 mRNA expression in the duodenum or jejunum in a linear or quadratic manner on day 28, and improved the 5-LOX mRNA expression quadratically in the small intestine (P < 0.05). These results implied that the metabolism of AA was regulated by chitosan in a dose-dependent relationship, which may be one reason why chitosan affected immune function via AA pathway in weaned piglets.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1156
Author(s):  
Madelaine Sugasti-Salazar ◽  
Yessica Y. Llamas-González ◽  
Dalkiria Campos ◽  
José González-Santamaría

Mayaro virus (MAYV) hijacks the host’s cell machinery to effectively replicate. The mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK1/2 have emerged as crucial cellular factors implicated in different stages of the viral cycle. However, whether MAYV uses these MAPKs to competently replicate has not yet been determined. The aim of this study was to evaluate the impact of MAPK inhibition on MAYV replication using primary human dermal fibroblasts (HDFs) and HeLa cells. Viral yields in supernatants from MAYV-infected cells treated or untreated with inhibitors SB203580, SP600125, U0126, or Losmapimod were quantified using plaque assay. Additionally, viral protein expression was analyzed using immunoblot and immunofluorescence. Knockdown of p38⍺/p38β isoforms was performed in HDFs using the PROTACs molecule NR-7h. Our data demonstrated that HDFs are highly susceptible to MAYV infection. SB203580, a p38 inhibitor, reduced MAYV replication in a dose-dependent manner in both HDFs and HeLa cells. Additionally, SB203580 significantly decreased viral E1 protein expression. Similarly, knockdown or inhibition of p38⍺/p38β isoforms with NR-7h or Losmapimod, respectively, affected MAYV replication in a dose-dependent manner. Collectively, these findings suggest that p38 could play an important role in MAYV replication and could serve as a therapeutic target to control MAYV infection.


1984 ◽  
Vol 62 (7) ◽  
pp. 857-859 ◽  
Author(s):  
J. S. Richardson ◽  
T. G. Mattio ◽  
E. Giacobini

The electrically stimulated release of [3H]acetylcholine from the parasympathetic nerve terminals of the rat iris in vitro is increased in a dose-dependent manner by scopolamine but is decreased by the tricyclic antidepressants amitriptyline and imipramine. The increased release in the presence of scopolamine seems to be due to the blockade of a presynaptic muscarinic autoreceptor that, in the drug-free state, inhibits the release of acetylcholine. However, at drug concentrations that should have comparable antimuscarinic potency, the antidepressants inhibit the release of acetylcholine. This suggests that the anticholinergic side effects of the antidepressants may be due to the reduced release of acetylcholine from parasympathetic nerve terminals as well as a possible direct postsynaptic muscarinic receptor blocking action. Whatever the mechanism of this action, the antidepressants do not have the same effect as scopolamine at the presynaptic muscarinic autoreceptor in the rat iris.


2015 ◽  
Vol 18;4 (4;18) ◽  
pp. E615-E628
Author(s):  
Lei Chen

Background: Chronic pancreatitis (CP) is a long-standing inflammation of the exocrine pancreas, which typically results in severe and constant abdominal pain. Previous studies on the mechanisms underlying CP-induced pain have primarily focused on the peripheral nociceptive system. A role for a central mechanism in the mediation or modulation of abdominal pain is largely unknown. Tanshinone IIA (TSN IIA), an active component of the traditional Chinese medicine Danshen, exhibits anti-inflammatory properties via downregulation of the expression of high-mobility group protein B1 (HMGB1), a late proinflammatory cytokine. HMGB1 binds and activates toll-like receptor 4 (TLR4) to induce spinal astrocyte activation and proinflammatory cytokine release in neuropathic pain. Objective: In this study, we investigated the effect of TSN IIA on pain responses in rats with trinitrobenzene sulfonic acid (TNBS)-induced CP. The roles of central mechanisms in the mediation or modulation of CP were also investigated. Study Design: A randomized, double-blind, placebo-controlled animal trial. Methods: CP was induced in rats by intrapancreatic infusion of trinitrobenzene sulfonic acid (TNBS). Pancreatic histopathological changes were characterized with semi-quantitative scores. The abdomen nociceptive behaviors were assessed with von Frey filaments. The effects of intraperitoneally administered TSN IIA on CP-induced mechanical allodynia were tested. The spinal protein expression of HMGB1 was determined by western blot. The spinal mRNA and protein expression of proinflammatory cytokines IL-1β, TNF-α, and IL-6 were determined by RT-PCR and western blot, respectively. The spinal expression of the HMGB1 receptor TRL4 and the astrocyte activation marker glial fibrillary acidic protein (GFAP) were determined by western blot or immunohistological staining after intraperitoneal injection of TSN IIA or intrathecal administration of a neutralizing anti-HMGB1 antibody. Results: TNBS infusion resulted in pancreatic histopathological changes of chronic pancreatitis and mechanical allodynia in rats. TSN IIA significantly attenuated TNBS-induced mechanical allodynia in a dose-dependent manner. TNBS significantly increased the spinal expression of HMGB1 and proinflammatory cytokines IL-1β, TNF-α, and IL-6. These TNBS-induced changes were significantly inhibited by TSN IIA in a dose-dependent manner. Furthermore, TSN IIA, but not the neutralizing anti-HMGB1 antibody, significantly inhibited TNBS-induced spinal TLR4 and GFAP expression. Limitations: In addition to TLR4, HMGB1 can also bind to toll-like receptor-2 (TLR2) and the receptor for advanced glycation end products (RAGE). Additional studies are warranted to ascertain whether HMGB1 contributes to CP-induced pain through activation of these receptors. Conclusions: Our results suggest that spinal HMGB1 contributes to the development of CPinduced pain and can potentially be a therapeutic target. TSN IIA attenuates CP-induced pain via downregulation of spinal HMGB1 and TRL4 expression. Therefore, TSN IIA may be a potential anti-nociceptive drug for the treatment of CP-induced pain. Key words: Chronic pancreatitis, HMGB1, proinflammatory cytokine, Tanshinone IIA, spinal cord, astrocyte, TLR4


2003 ◽  
Vol 285 (5) ◽  
pp. L1087-L1098 ◽  
Author(s):  
Cherie A. Singer ◽  
Kimberly J. Baker ◽  
Alan McCaffrey ◽  
David P. AuCoin ◽  
Melissa A. Dechert ◽  
...  

We have previously demonstrated that p38 and extracellular signal-regulated protein kinase (ERK) mitogen-activated protein kinases (MAPK) are components of proinflammatory induced cytokine expression in human airway myocytes. The experiments described here further these studies by examining p38 MAPK and NF-κB regulation of cyclooxygenase-2 (COX-2) expression in response to a complex inflammatory stimulus consisting of 10 ng/ml interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), and interferon (IFN)-γ. COX-2 expression was induced with this stimulus in a time-dependent manner, with maximal expression seen 12-20 h after treatment. Semiquantitative RT-PCR and immunoblotting experiments demonstrate decreased COX-2 expression following treatment with the p38 MAPK inhibitor SB-203580 (25 μM) or the proteosome inhibitor MG-132 (1 μM). SB-203580 did not affect cytokine-stimulated IκBα degradation, NF-κB nuclear binding activity, or NF-κB-dependent signaling from the COX-2 promoter, indicating that p38 MAPK and NF-κB may affect COX-2 expression via separate signaling pathways. SB-203580, but not MG-132, also increased the initial rate of COX-2 mRNA decay, indicating p38 MAPK, but not NF-κB, participates in the regulation of COX-2 mRNA stability. These findings suggest that although p38 MAPK and NF-κB signaling regulate steady-state levels of COX-2 expression, p38 MAPK additionally affects stability of COX-2 mRNA in cytokine-stimulated human airway myocytes.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3094 ◽  
Author(s):  
Jun Yin ◽  
Han Hyuk Kim ◽  
In Hyeok Hwang ◽  
Dong Hee Kim ◽  
Min Won Lee

Quercus mongolica Fisch. ex Ledeb. (QM) has been used as an oriental traditional medicine to relieve hemorrhoids, fever, and enteritis. We screened the inhibitory activities of the extracts and compounds (1–6) isolated from QM on the production of inflammatory cytokines and chemokines to evaluate their anti-inflammatory activities. Further, we evaluated the expression levels of cytokines, chemokines, and immune factors on pedunculagin (PC, 1), which was selected from isolated compounds (1–6) because of its potential anti-inflammation effect. Additionally, we evaluated whether the inflammation mitigation effects of PC (1) following UVB exposure in keratinocytes occurred because of nuclear factor (NF)-κB and signal transducer and activator of transcription (STAT)/Janus kinase (JAK) activation. PC (1) remarkably suppressed interleukin (IL)-6, IL-10, IL-13, and monocyte chemoattractant protein-1 (MCP-1) mRNA expression and reduced the mRNA expression level of Cyclooxygenase-2 (COX-2) and also reduced the phosphorylation of p38 mitogen-activated protein kinases (p38), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) in a concentration-dependent manner.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4706-4706
Author(s):  
Hongyan Tong ◽  
Jie Jin ◽  
Weilai Xu ◽  
Wenbin Qian ◽  
Maofang Lin

Abstract The telomerase activity can be down regulated by arsenic trioxide (As2O3), which is regarded as an apoptotic induction agent, is confirmed in many kinds of tumor cells. To investigate the mechanisms of telomerase regulation and to explore the correlation of As2O3 inducing apoptosis and telomerase regulation in MUTZ-1 cells, which are established as a high-risk myelodysplasia Cell line that derived from a MDS patient (FAB subtype refractory anemia with excess of blasts), a quantitative assessment of the telomerase activity by TRAP-ELISA and detection of the expression levels of hTERT, TRF1 (TTAGGG repeat binding factor 1), TRF2 (TTAGGG repeat binding factor 2), bcl-2, bax mRNA were performed, together with the assessment of the apoptosis by means of translocation of phosphatidylserine (PS) through flow cytometry assay. The results indicated that a typical apoptotic cell group distribution of DNA content was represented in the MUTZ-1 cells after being exposed to As2O3 at the range of concentration from 1μmol/L to 8μmol/L in a dose-dependent manner (r=0.736, P<0.001) and time-dependent manner (r=0.674, p<0.05), and the telomerase activity was down-regulated in a time-dependent manner (r=−0.976,P=0.024), and the expression level of hTERT mRNA in MUTZ-1 cells was represented in a dose-dependent manner (r=−0.892,P=0.042) and time-dependent manner (r=−1.000,P=0.04), after the cells were treated by As2O3 at the dosage as above. It was showed that a significant correlation between the decreased telomerase activity and the increased percentage of apoptotic cells in the treated cells (r=0.938,P=0.018), and there was a strong relationship between the telomerase activity and the mRNA expression of hTERT gene (r=0.783,P=0.022). However, As2O3 has no obvious effect on the expression level of TRF1 mRNA and TRF2 mRNA, which were regarded as two telomere-binding proteins. Further findings indicated that the inhibition of telomerase activity in MUTZ-1 cells was accompanied with down-regulated mRNA expression of bcl-2 gene (densitometry readings: 0.255±0.017 vs 0.466±0.069, P<0.05) and decreased ration of bcl-2/bax (densitometry reading ratios: 0.890±0.083 vs 0.546±0.014, P<0.05) at the dosage of 4μmol/L for 24 hours. These observations suggest that the apoptosis induced by As2O3 on MUTZ- 1 cells might be mediated through the inhibition of telomerase activity regulated by expression of hTERT gene, which implies that may be one of the mechanisms of As2O3 inducing apoptosis in MUTZ-1 cells.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Yueh-Ling Hsieh ◽  
Shun-An Yang ◽  
Chen-Chia Yang ◽  
Li-Wei Chou

Background and Purpose. Dry needling is an effective therapy for the treatment of pain associated with myofascial trigger point (MTrP). However, the biochemical effects of dry needling that are associated with pain, inflammation, and hypoxia are unclear. This study investigated the activities ofβ-endorphin, substance P, TNF-α, COX-2, HIF-1α, iNOS, and VEGF after different dosages of dry needling at the myofascial trigger spots (MTrSs) of a skeletal muscle in rabbit. Materials and Methods. Dry needling was performed either with one dosage (1D) or five dosages (5D) into the biceps femoris with MTrSs in New Zealand rabbits. Biceps femoris, serum, and dorsal root ganglion (DRG) were sampled immediately and 5 d after dry needling forβ-endorphin, substance P, TNF-α, COX-2, HIF-1α, iNOS, and VEGF immunoassays.Results. The 1D treatment enhanced theβ-endorphin levels in the biceps femoris and serum and reduced substance P in the biceps femoris and DRG. The 5D treatment reversed these effects and was accompanied by increase of TNF-α, COX-2, HIF-1α, iNOS, and VEGF production in the biceps femoris. Moreover, the higher levels of these biochemicals were still maintained 5 d after treatment.Conclusion. Dry needling at the MTrSs modulates various biochemicals associated with pain, inflammation, and hypoxia in a dose-dependent manner.


2008 ◽  
Vol 36 (5) ◽  
pp. 1032-1038 ◽  
Author(s):  
B Kong ◽  
Y Tian ◽  
W Zhu ◽  
S Su ◽  
Y Kan

The effects of cyclooxygenase 2 (COX-2) selective inhibitors on the proliferation of ectopic endometrial stromal cells in vitro were investigated. Ectopic endometrial stromal cells were treated with either celecoxib or nimesulide for 24 and 48 h. The results showed that (i) both celecoxib and nimesulide inhibited the proliferation of ectopic endometrial stromal cells in vitro in a time- and dose-dependent manner; (ii) the expression of prostaglandin E2 was significantly inhibited by both celecoxib and nimesulide in a dose-dependent manner; (iii) the percentage of apoptotic cells was significantly higher for cells treated with celecoxib or nimesulide than for untreated cells; and (iv) the percentage of the cells in the G0/G1 phase increased after the cells were treated with either agent in a dose-dependent manner. These data suggest that celecoxib and nimesulide inhibited proliferation of ectopic endometrial stromal cells by inducing apoptosis and blocking the cell cycle at the G0/G1 phase.


Sign in / Sign up

Export Citation Format

Share Document