scholarly journals Tissue-Specific Regulation of Drosophila NF-κB Pathway Activation by Peptidoglycan Recognition Protein SC

2015 ◽  
Vol 8 (1) ◽  
pp. 67-80 ◽  
Author(s):  
Denis Costechareyre ◽  
Florence Capo ◽  
Alexandre Fabre ◽  
Delphine Chaduli ◽  
Christine Kellenberger ◽  
...  

In Drosophila, peptidoglycan (PGN) is detected by PGN recognition proteins (PGRPs) that act as pattern recognition receptors. Some PGRPs such as PGRP-LB or PGRP-SCs are able to cleave PGN, therefore reducing the amount of immune elicitors and dampening immune deficiency (IMD) pathway activation. The precise role of PGRP-SC is less well defined because the PGRP-SC genes (PGRP-SC1a, PGRP-SC1b and PGRP-SC2) lie very close on the chromosome and have been studied using a deletion encompassing the three genes. By generating PGRP-SC-specific mutants, we reevaluated the roles of PGRP-LB, PGRP-SC1 and PGRP-SC2, respectively, during immune responses. We showed that these genes are expressed in different gut domains and that they follow distinct transcriptional regulation. Loss-of-function mutant analysis indicates that PGRP-LB is playing a major role in IMD pathway activation and bacterial load regulation in the gut, although PGRP-SCs are expressed at high levels in this organ. We also demonstrated that PGRP-SC2 is the main negative regulator of IMD pathway activation in the fat body. Accordingly, we showed that mutants for either PGRP-LB or PGRP-SC2 displayed a distinct susceptibility to bacteria depending on the infection route. Lastly, we demonstrated that PGRP-SC1 and PGRP-SC2 are required in vivo for full Toll pathway activation by Gram-positive bacteria.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pragya Prakash ◽  
Arghyashree Roychowdhury-Sinha ◽  
Akira Goto

AbstractDrosophila immune deficiency (IMD) pathway is similar to the human tumor necrosis factor receptor (TNFR) signaling pathway and is preferentially activated by Gram-negative bacterial infection. Recent studies highlighted the importance of IMD pathway regulation as it is tightly controlled by numbers of negative regulators at multiple levels. Here, we report a new negative regulator of the IMD pathway, Verloren (Velo). Silencing of Velo led to constitutive expression of the IMD pathway dependent antimicrobial peptides (AMPs), and Escherichia coli stimulation further enhanced the AMP expression. Epistatic analysis indicated that Velo knock-down mediated AMP upregulation is dependent on the canonical members of the IMD pathway. The immune fluorescent study using overexpression constructs revealed that Velo resides both in the nucleus and cytoplasm, but the majority (~ 75%) is localized in the nucleus. We also observed from in vivo analysis that Velo knock-down flies exhibit significant upregulation of the AMP expression and reduced bacterial load. Survival experiments showed that Velo knock-down flies have a short lifespan and are susceptible to the infection of pathogenic Gram-negative bacteria, P. aeruginosa. Taken together, these data suggest that Velo is an additional new negative regulator of the IMD pathway, possibly acting in both the nucleus and cytoplasm.


2020 ◽  
Author(s):  
Ertao Li ◽  
Jianhui Qin ◽  
Honglin Feng ◽  
Jinqiao Li ◽  
Xiaofeng Li ◽  
...  

Abstract Background Entomopathogenic nematodes (EPNs) emerge as compatible alternatives to conventional insecticides in controlling Holotrichia parallela larvae (Coleoptera: Scarabaeidae). However, the immune responses of H. parallela against EPNs infection remain unclear. Results In present research, RNA-Seq was firstly performed. A total of 89427 and 85741 unigenes were achieved from the midgut of H. parallela larvae treated with Heterorhabditis beicherriana LF for 24 and 72 h, respectively; 2545 and 3156 unigenes were differentially regulated, respectively. Among those differentially expressed genes (DEGs), 74 were identified potentially related to the immune response. Notably, some immune-related genes, such as peptidoglycan recognition protein SC1 (PGRP-SC1), pro-phenoloxidase activating enzyme-I (PPAE-I) and glutathione s-transferase (GST), were induced at both treatment points. Bioinformatics analysis showed that PGRP-SC1, PPAE-I and GST were all involved in anti-parasitic immune process. Quantitative real-time PCR (qRT-PCR) results showed that the three immune-related genes were expressed in all developmental stages; PGRP-SC1 and PPAE-I had higher expressions in midgut and fat body, respectively, while GST exhibited high expression in both of them. Moreover, in vivo silencing of them resulted in increased susceptibility of H. parallela larvae to H. beicherriana LF. Conclusion These results suggest that PGRP-SC1, PPAE-I and GST could be used as target genes to disturb the immune system of H. parallela. This study provides the first comprehensive transcriptome resource of H. parallela exposure to nematode challenge that will help to support further comparative studies on host-EPN interactions.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ertao Li ◽  
Jianhui Qin ◽  
Honglin Feng ◽  
Jinqiao Li ◽  
Xiaofeng Li ◽  
...  

Abstract Background Entomopathogenic nematodes (EPNs) emerge as compatible alternatives to conventional insecticides in controlling Holotrichia parallela larvae (Coleoptera: Scarabaeidae). However, the immune responses of H. parallela against EPNs infection remain unclear. Results In present research, RNA-Seq was firstly performed. A total of 89,427 and 85,741 unigenes were achieved from the midgut of H. parallela larvae treated with Heterorhabditis beicherriana LF for 24 and 72 h, respectively; 2545 and 3156 unigenes were differentially regulated, respectively. Among those differentially expressed genes (DEGs), 74 were identified potentially related to the immune response. Notably, some immune-related genes, such as peptidoglycan recognition protein SC1 (PGRP-SC1), pro-phenoloxidase activating enzyme-I (PPAE-I) and glutathione s-transferase (GST), were induced at both treatment points. Bioinformatics analysis showed that PGRP-SC1, PPAE-I and GST were all involved in anti-parasitic immune process. Quantitative real-time PCR (qRT-PCR) results showed that the three immune-related genes were expressed in all developmental stages; PGRP-SC1 and PPAE-I had higher expressions in midgut and fat body, respectively, while GST exhibited high expression in both of them. Moreover, in vivo silencing of them resulted in increased susceptibility of H. parallela larvae to H. beicherriana LF. Conclusion These results suggest that H. parallela PGRP-SC1, PPAE-I and GST are involved in the immune responses to resist H. beicherriana LF infection. This study provides the first comprehensive transcriptome resource of H. parallela exposure to nematode challenge that will help to support further comparative studies on host-EPN interactions.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 95 ◽  
Author(s):  
Sara Cabral ◽  
Adriano de Paula ◽  
Richard Samuels ◽  
Rodrigo da Fonseca ◽  
Simone Gomes ◽  
...  

The mosquito Aedes aegypti is the most notorious vector of illness-causing viruses. The use of entomopathogenic fungi as bioinsecticides is a promising alternative for the development of novel mosquito control strategies. We investigate whether differences in immune responses could be responsible for modifications in survival rates of insects following different feeding regimes. Sucrose and blood-fed adult A. aegypti females were sprayed with M. anisopliae 1 × 106 conidia mL−1, and after 48 h, the midgut and fat body were dissected. We used RT-qPCR to monitor the expression of Cactus and REL1 (Toll pathway), IMD, REL2, and Caspar (IMD pathway), STAT and PIAS (JAK-STAT pathway), as well as the expression of antimicrobial peptides (Defensin A, Attacin and Cecropin G). REL1 and REL2 expression in both the midgut and fat body were higher in blood-fed fungus-challenged A. aegypti than in sucrose-fed counterparts. Interestingly, infection of sucrose-fed insects induced Cactus expression in the fat body, a negative regulator of the Toll pathway. The IMD gene was upregulated in the fat body in response to fungal infection after a blood meal. Additionally, we observed the induction of antimicrobial peptides in the blood-fed fungus-challenged insects. This study suggests that blood-fed A. aegypti are less susceptible to fungal infection due to the rapid induction of Toll and IMD immune pathways.


Genetics ◽  
2018 ◽  
Vol 211 (3) ◽  
pp. 913-923 ◽  
Author(s):  
Zhenghan Wang ◽  
Ofelia Tacchelly-Benites ◽  
Geoffrey P. Noble ◽  
Megan K. Johnson ◽  
Jean-Philippe Gagné ◽  
...  

Aberrant activation of the Wnt signal transduction pathway triggers the development of colorectal cancer. The ADP-ribose polymerase Tankyrase (TNKS) mediates proteolysis of Axin—a negative regulator of Wnt signaling—and provides a promising therapeutic target for Wnt-driven diseases. Proteolysis of TNKS substrates is mediated through their ubiquitination by the poly-ADP-ribose (pADPr)-dependent RING-domain E3 ubiquitin ligase RNF146/Iduna. Like TNKS, RNF146 promotes Axin proteolysis and Wnt pathway activation in some cultured cell lines, but in contrast with TNKS, RNF146 is dispensable for Axin degradation in colorectal carcinoma cells. Thus, the contexts in which RNF146 is essential for TNKS-mediated Axin destabilization and Wnt signaling remain uncertain. Herein, we tested the requirement for RNF146 in TNKS-mediated Axin proteolysis and Wnt pathway activation in a range of in vivo settings. Using null mutants in Drosophila, we provide genetic and biochemical evidence that Rnf146 and Tnks function in the same proteolysis pathway in vivo. Furthermore, like Tnks, Drosophila Rnf146 promotes Wingless signaling in multiple developmental contexts by buffering Axin levels to ensure they remain below the threshold at which Wingless signaling is inhibited. However, in contrast with Tnks, Rnf146 is dispensable for Wingless target gene activation and the Wingless-dependent control of intestinal stem cell proliferation in the adult midgut during homeostasis. Together, these findings demonstrate that the requirement for Rnf146 in Tnks-mediated Axin proteolysis and Wingless pathway activation is dependent on physiological context, and suggest that, in some cell types, functionally redundant pADPr-dependent E3 ligases or other compensatory mechanisms promote the Tnks-dependent proteolysis of Axin in both mammalian and Drosophila cells.


2020 ◽  
Vol 21 (6) ◽  
pp. 2113 ◽  
Author(s):  
Maryam Keshavarz ◽  
Yong Hun Jo ◽  
Tariku Tesfaye Edosa ◽  
Young Min Bae ◽  
Yeon Soo Han

Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to infections, studies on its role in Tenebrio molitor are lacking. Here, we present a functional analysis of T. molitor PGRP-SA (TmPGRP-SA). In the absence of microbes, TmPGRP-SA was highly expressed in the late-larval fat body, followed by hemocytes, and gut. Interestingly, following Escherichia coli, Staphylococcus aureus, and Candida albicans infections, the mRNA level of TmPGRP-SA was significantly upregulated in both the fat body and gut. TmPGRP-SA silencing had a significant effect on the mortality rates for all the microbes tested. Moreover, TmPGRP-SA is required for regulating the expression of eight AMP genes namely TmTenecin-1, -2, and -4; TmDefensin-1 and -2; TmColeoptericin-1; and TmAttacin-1b and -2 in the fat body in response to E. coli and S. aureus infections. TmPGRP-SA is essential for the transcription of TmTenecin-2, -4; TmDefensin-2; TmColeoptericin-1, -2; and TmAttacin-1a, -1b, and -2 in the gut upon E. coli and C. albicans infections. However, TmPGRP-SA does not regulate AMP expression in the hemocytes. Additionally, TmDorsal isoform X2, a downstream Toll transcription factor, was downregulated in TmPGRP-SA-silenced larval fat body following E. coli and S. aureus challenges, and in the gut following E. coli and C. albicans challenges.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1176-1176
Author(s):  
Xin Gao ◽  
Tongyu Wu ◽  
Jamie Lahvic ◽  
Kirby D. Johnson ◽  
Erik A. Ranheim ◽  
...  

Abstract The generation of hematopoietic stem cells (HSCs) via endothelial-to-hematopoietic transition within the aorta-gonad-mesonephros (AGM) region of the mammalian embryo is crucial for development of the adult hematopoietic system. Many questions remain unanswered regarding the molecular program in hemogenic endothelium that promotes the budding of hematopoietic cell clusters containing HSCs. We demonstrated that a deletion of a Gata2 cis-element reduced GATA-2 levels in the AGM and abrogated the capacity of hemogenic endothelium to generate HSCs. Consistent with the defective HSC generator, the mutant fetal livers were deficient in hematopoietic stem and progenitor cells (HSPCs). Using an ex vivo intact AGM culture system, we demonstrated that retrovirus-mediated GATA-2 expression in the +9.5-/- AGM rescues its hematopoietic defect. Thus, the reduced GATA-2 levels in the +9.5-/- AGM cause the HSC generation defect, and this rescue assay provides a unique system to decipher the downstream genetic network. To discover novel druggable regulators in the GATA-2 pathway to promote HSC generation, we profiled the expression pattern of all G-protein-coupled-receptors, which represent the most successful class of pharmaceutical targets, in the AGM using our RNA-seq dataset (+9.5+/+ vs. +9.5-/- AGM). This global GPCR analysis revealed four GATA-1 and GATA-2 co-regulated genes, Adora3, Gpr65, Ltb4r1, and Adora2b. Database mining revealed that only the Gpr65 expression pattern resembled that of Gata2. To evaluate GPR65 functions during HSC generation, we conducted an shRNA-based loss-of-function analysis in the AGM. While downregulating Gpr65 did not alter the abundance of the CD31+ c-Kit+ hematopoietic cell population, it significantly increased the CD31+ c-Kit+ Sca1+ HSC-containing cell population (1.4 fold, p<0.05), indicating that GPR65 suppresses HSC generation. To validate the involvement of GPR65 during the HSC generation process in vivo, we conducted a morpholino oligonucleotide (MO)-based loss-of-function study in zebrafish. In situ hybridization analysis revealed high Runx1/c-Myb expression (labeling definitive HSCs and progenitors) in 48% of embryos injected with Gpr65 MOs compared with 11% of wild type embryos. Consistent with the ex vivo AGM analysis, this increase in Runx1/c-Myb expression upon Gpr65 MO treatment suggests GPR65 is a negative regulator of HSC emergence in vivo. To dissect the molecular mechanism governing GPR65-suppressed HSC generation, we tested whether lowering Gpr65 levels altered the expression of key HSC regulators. Quantitative RT-PCR analysis revealed that downregulating Gpr65 by 60-70% in AGM CD31+ c-Kit- endothelialcells increased Gata2 mRNA by 2.9 fold (p<0.05), Gata2 primary transcripts by 3.9 fold (p<0.05), and elevated expression of the GATA-2 target gene Runx1 (2.9 fold, p<0.05). These results support a mechanism whereby GPR65-mediated Gata2 repression is an important determinant of GPR65-suppressed HSC generation. In addition to this important function in the AGM, Gpr65 knockdown studies in primary fetal liver HSPCs revealed GPR65 suppression of Gata2 transcription to the same magnitude as in the AGM. To determine if GPR65-mediated Gata2 repression requires the +9.5 site, we infected freshly isolated HSPCs from fetal livers heterozygous for the +9.5 site with retrovirus expressing shRNA targeting Gpr65. Quantitative RT-PCR with allele-specific primers revealed that Gpr65 knockdown significantly upregulates Gata2 primary transcripts from the wild type (3.1 fold, p<0.01), but not the 9.5 mutant, allele. These results establish a requirement of the +9.5 site for GPR65 to repress Gata2 transcription. As we reported that SetD8, the only enzyme known to monomethylate H4K20, represses Gata2 expression via the +9.5 site, we tested whether GPR65 represses Gata2 expression through SetD8. H4K20me1 ChIP revealed that downregulating Gpr65 significantly reduces H4K20me1 levels at the +9.5 site by 30% (p<0.005), suggesting that GPR65 repression of Gata2 transcription involves SetD8. Our studies indicate that a G-protein coupled receptor, GPR65, is negative regulator of HSC generation and establish a GATA-2-GPR65 Type Iincoherent feedforward loop that controls HSC generation, providing a foundation to develop new targets for expanding HSCs for transplantation therapies and a new druggable target to treat hematologic disorders. Disclosures Zon: FATE Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Scholar Rock: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder.


2004 ◽  
Vol 24 (2) ◽  
pp. 573-583 ◽  
Author(s):  
Myungjin Kim ◽  
Guang-Ho Cha ◽  
Sunhong Kim ◽  
Jun Hee Lee ◽  
Jeehye Park ◽  
...  

ABSTRACT Mitogen-activated protein kinase (MAPK) phosphatase 3 (MKP-3) is a well-known negative regulator in the Ras/extracellular signal-regulated kinase (ERK)-MAPK signaling pathway responsible for cell fate determination and proliferation during development. However, the physiological roles of MKP-3 and the mechanism by which MKP-3 regulates Ras/Drosophila ERK (DERK) signaling in vivo have not been determined. Here, we demonstrated that Drosophila MKP-3 (DMKP-3) is critically involved in cell differentiation, proliferation, and gene expression by suppressing the Ras/DERK pathway, specifically binding to DERK via the N-terminal ERK-binding domain of DMKP-3. Overexpression of DMKP-3 reduced the number of photoreceptor cells and inhibited wing vein differentiation. Conversely, DMKP-3 hypomorphic mutants exhibited extra photoreceptor cells and wing veins, and its null mutants showed striking phenotypes, such as embryonic lethality and severe defects in oogenesis. All of these phenotypes were highly similar to those of the gain-of-function mutants of DERK/rl. The functional interaction between DMKP-3 and the Ras/DERK pathway was further confirmed by genetic interactions between DMKP-3 loss-of-function mutants or overexpressing transgenic flies and various mutants of the Ras/DERK pathway. Collectively, these data provide the direct evidences that DMKP-3 is indispensable to the regulation of DERK signaling activity during Drosophila development.


Sign in / Sign up

Export Citation Format

Share Document