scholarly journals Immune-related genes of the larval Holotrichia parallela in response to entomopathogenic nematodes Heterorhabditis beicherriana LF

Author(s):  
Ertao Li ◽  
Jianhui Qin ◽  
Honglin Feng ◽  
Jinqiao Li ◽  
Xiaofeng Li ◽  
...  

Abstract Background Entomopathogenic nematodes (EPNs) emerge as compatible alternatives to conventional insecticides in controlling Holotrichia parallela larvae (Coleoptera: Scarabaeidae). However, the immune responses of H. parallela against EPNs infection remain unclear. Results In present research, RNA-Seq was firstly performed. A total of 89427 and 85741 unigenes were achieved from the midgut of H. parallela larvae treated with Heterorhabditis beicherriana LF for 24 and 72 h, respectively; 2545 and 3156 unigenes were differentially regulated, respectively. Among those differentially expressed genes (DEGs), 74 were identified potentially related to the immune response. Notably, some immune-related genes, such as peptidoglycan recognition protein SC1 (PGRP-SC1), pro-phenoloxidase activating enzyme-I (PPAE-I) and glutathione s-transferase (GST), were induced at both treatment points. Bioinformatics analysis showed that PGRP-SC1, PPAE-I and GST were all involved in anti-parasitic immune process. Quantitative real-time PCR (qRT-PCR) results showed that the three immune-related genes were expressed in all developmental stages; PGRP-SC1 and PPAE-I had higher expressions in midgut and fat body, respectively, while GST exhibited high expression in both of them. Moreover, in vivo silencing of them resulted in increased susceptibility of H. parallela larvae to H. beicherriana LF. Conclusion These results suggest that PGRP-SC1, PPAE-I and GST could be used as target genes to disturb the immune system of H. parallela. This study provides the first comprehensive transcriptome resource of H. parallela exposure to nematode challenge that will help to support further comparative studies on host-EPN interactions.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ertao Li ◽  
Jianhui Qin ◽  
Honglin Feng ◽  
Jinqiao Li ◽  
Xiaofeng Li ◽  
...  

Abstract Background Entomopathogenic nematodes (EPNs) emerge as compatible alternatives to conventional insecticides in controlling Holotrichia parallela larvae (Coleoptera: Scarabaeidae). However, the immune responses of H. parallela against EPNs infection remain unclear. Results In present research, RNA-Seq was firstly performed. A total of 89,427 and 85,741 unigenes were achieved from the midgut of H. parallela larvae treated with Heterorhabditis beicherriana LF for 24 and 72 h, respectively; 2545 and 3156 unigenes were differentially regulated, respectively. Among those differentially expressed genes (DEGs), 74 were identified potentially related to the immune response. Notably, some immune-related genes, such as peptidoglycan recognition protein SC1 (PGRP-SC1), pro-phenoloxidase activating enzyme-I (PPAE-I) and glutathione s-transferase (GST), were induced at both treatment points. Bioinformatics analysis showed that PGRP-SC1, PPAE-I and GST were all involved in anti-parasitic immune process. Quantitative real-time PCR (qRT-PCR) results showed that the three immune-related genes were expressed in all developmental stages; PGRP-SC1 and PPAE-I had higher expressions in midgut and fat body, respectively, while GST exhibited high expression in both of them. Moreover, in vivo silencing of them resulted in increased susceptibility of H. parallela larvae to H. beicherriana LF. Conclusion These results suggest that H. parallela PGRP-SC1, PPAE-I and GST are involved in the immune responses to resist H. beicherriana LF infection. This study provides the first comprehensive transcriptome resource of H. parallela exposure to nematode challenge that will help to support further comparative studies on host-EPN interactions.


2015 ◽  
Vol 8 (1) ◽  
pp. 67-80 ◽  
Author(s):  
Denis Costechareyre ◽  
Florence Capo ◽  
Alexandre Fabre ◽  
Delphine Chaduli ◽  
Christine Kellenberger ◽  
...  

In Drosophila, peptidoglycan (PGN) is detected by PGN recognition proteins (PGRPs) that act as pattern recognition receptors. Some PGRPs such as PGRP-LB or PGRP-SCs are able to cleave PGN, therefore reducing the amount of immune elicitors and dampening immune deficiency (IMD) pathway activation. The precise role of PGRP-SC is less well defined because the PGRP-SC genes (PGRP-SC1a, PGRP-SC1b and PGRP-SC2) lie very close on the chromosome and have been studied using a deletion encompassing the three genes. By generating PGRP-SC-specific mutants, we reevaluated the roles of PGRP-LB, PGRP-SC1 and PGRP-SC2, respectively, during immune responses. We showed that these genes are expressed in different gut domains and that they follow distinct transcriptional regulation. Loss-of-function mutant analysis indicates that PGRP-LB is playing a major role in IMD pathway activation and bacterial load regulation in the gut, although PGRP-SCs are expressed at high levels in this organ. We also demonstrated that PGRP-SC2 is the main negative regulator of IMD pathway activation in the fat body. Accordingly, we showed that mutants for either PGRP-LB or PGRP-SC2 displayed a distinct susceptibility to bacteria depending on the infection route. Lastly, we demonstrated that PGRP-SC1 and PGRP-SC2 are required in vivo for full Toll pathway activation by Gram-positive bacteria.


2020 ◽  
Vol 21 (6) ◽  
pp. 2113 ◽  
Author(s):  
Maryam Keshavarz ◽  
Yong Hun Jo ◽  
Tariku Tesfaye Edosa ◽  
Young Min Bae ◽  
Yeon Soo Han

Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to infections, studies on its role in Tenebrio molitor are lacking. Here, we present a functional analysis of T. molitor PGRP-SA (TmPGRP-SA). In the absence of microbes, TmPGRP-SA was highly expressed in the late-larval fat body, followed by hemocytes, and gut. Interestingly, following Escherichia coli, Staphylococcus aureus, and Candida albicans infections, the mRNA level of TmPGRP-SA was significantly upregulated in both the fat body and gut. TmPGRP-SA silencing had a significant effect on the mortality rates for all the microbes tested. Moreover, TmPGRP-SA is required for regulating the expression of eight AMP genes namely TmTenecin-1, -2, and -4; TmDefensin-1 and -2; TmColeoptericin-1; and TmAttacin-1b and -2 in the fat body in response to E. coli and S. aureus infections. TmPGRP-SA is essential for the transcription of TmTenecin-2, -4; TmDefensin-2; TmColeoptericin-1, -2; and TmAttacin-1a, -1b, and -2 in the gut upon E. coli and C. albicans infections. However, TmPGRP-SA does not regulate AMP expression in the hemocytes. Additionally, TmDorsal isoform X2, a downstream Toll transcription factor, was downregulated in TmPGRP-SA-silenced larval fat body following E. coli and S. aureus challenges, and in the gut following E. coli and C. albicans challenges.


2020 ◽  
Vol 133 (18) ◽  
pp. jcs241943
Author(s):  
Marilyne Duffraisse ◽  
Rachel Paul ◽  
Julie Carnesecchi ◽  
Bruno Hudry ◽  
Agnes Banreti ◽  
...  

ABSTRACTHox proteins are major regulators of embryonic development, acting in the nucleus to regulate the expression of their numerous downstream target genes. By analyzing deletion forms of the Drosophila Hox protein Ultrabithorax (Ubx), we identified the presence of an unconventional nuclear export signal (NES) that overlaps with a highly conserved motif originally described as mediating the interaction with the PBC proteins, a generic and crucial class of Hox transcriptional cofactors that act in development and cancer. We show that this unconventional NES is involved in the interaction with the major exportin protein CRM1 (also known as Embargoed in flies) in vivo and in vitro. We find that this interaction is tightly regulated in the Drosophila fat body to control the autophagy-repressive activity of Ubx during larval development. The role of the PBC interaction motif as part of an unconventional NES was also uncovered in other Drosophila and human Hox proteins, highlighting the evolutionary conservation of this novel function. Together, our results reveal the extreme molecular versatility of a unique short peptide motif for controlling the context-dependent activity of Hox proteins both at transcriptional and non-transcriptional levels.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 760
Author(s):  
Qi Zhang ◽  
Jie Wang ◽  
Jin Zhang ◽  
Jie Wen ◽  
Guiping Zhao ◽  
...  

Lipopolysaccharide (LPS) is a component of the cell wall of Gram-negative bacteria, and triggers an inflammatory response both in vitro and in vivo. Here, we used LPS from Escherichia coli serotype enteritidis to stimulate chicken macrophages (HD11) and conducted the transcriptome analysis using a bioinformatics approach to explore the functions of immune-related genes and miRNAs. In total, 1759 differentially expressed genes (DEGs) and 18 differentially expressed (DE)-miRNAs were detected during LPS infection. At 6 h post infection, 1025 DEGs and 10 miRNAs were up-regulated, and 734 DEGs and 8 DE-miRNAs were down-regulated. Based on both RNA hybrid and miRanda systems, 55 DEGs could be targeted by 14 DE-miRNAs. The target genes were related to the immune response, such as IRF8, STAT3, TRAF7, and other potential candidate genes. The DE-miRNAs miR146a-3p, miR6583-5p, and miR30c-2-3p were investigated further. They were predicted to target 34 genes that may also be candidates for immune-related miRNAs and genes. Our results enhanced our understanding of the pathogenic mechanisms of Gram-negative bacteria in chickens.


2007 ◽  
Vol 27 (12) ◽  
pp. 4578-4588 ◽  
Author(s):  
Takahiro Tanji ◽  
Xiaodi Hu ◽  
Alexander N. R. Weber ◽  
Y. Tony Ip

ABSTRACT The inducible expression of antimicrobial peptide genes in Drosophila melanogaster is regulated by the conserved Toll and peptidoglycan recognition protein LC/immune deficiency (PGRP-LC/IMD) signaling pathways. It has been proposed that the two pathways have independent functions and mediate the specificity of innate immune responses towards different microorganisms. Scattered evidence also suggests that some antimicrobial target genes can be activated by both Toll and IMD, albeit to different extents. This dual activation can be mediated by independent stimulation or by cross-regulation of the two pathways. We show in this report that the Toll and IMD pathways can interact synergistically, demonstrating that cross-regulation occurs. The presence of Spätzle (the Toll ligand) and gram-negative peptidoglycan (the PGRP-LC ligand) together caused synergistic activation of representative target genes of the two pathways, including Drosomycin, Diptericin, and AttacinA. Constitutive activation of Toll and PGRP-LC/IMD could mimic the synergistic stimulation. RNA interference assays and promoter analyses demonstrate that cooperation of different NF-κB-related transcription factors mediates the synergy. These results illustrate how specific ligand binding by separate upstream pattern recognition receptors can be translated into a broad-spectrum host response, a hallmark of innate immunity.


1999 ◽  
Vol 112 (13) ◽  
pp. 2113-2124 ◽  
Author(s):  
G. Csikos ◽  
K. Molnar ◽  
N.H. Borhegyi ◽  
G.C. Talian ◽  
M. Sass

In the course of this study more than 20 proteins have been isolated from the larval cuticle of Manduca sexta. Synthesis, secretion, transport and accumulation of four particular proteins, representative members of four characteristic groups, were followed during metamorphosis by immunoblot and immuncytochemical methods and are described in detail in this paper. We established that only some of the proteins of the soft cuticle of Lepidopteran larvae are synthesized in epidermal cells at the beginning of the larval stages and are digested during the moulting period (MsCP29). Other proteins (MsCP30/11) are secreted into the cuticle by the epidermal cells in different forms during various developmental stages. Some proteins are secreted apically during the feeding period, but before ecdysis they are then taken up by epidermal cells and transported in a basolateral direction back into the hemolymph and saved in an immunologically intact form by the fat body cells (MsCP12.3). Some cuticle proteins have a non-epidermal origin. They are transported from the hemolymph into the cuticle. Before and during ecdysis these molecules reappear in the hemolymph and are detectable again in the pupal cuticle (MsCP78). Our data prove that the cuticle is not a non-living part of the insect body: it is not only an inert, protective armor, but maintains a continuous and dynamic metabolic connection with the other organs of the organism.


2001 ◽  
Vol 153 (5) ◽  
pp. 971-984 ◽  
Author(s):  
E. Bonnelye ◽  
L. Merdad ◽  
V. Kung ◽  
J.E. Aubin

The orphan nuclear estrogen receptor–related receptor α (ERRα), is expressed by many cell types, but is very highly expressed by osteoblastic cells in which it transactivates at least one osteoblast-associated gene, osteopontin. To study the putative involvement of ERRα in bone, we first assessed its expression in rat calvaria (RC) in vivo and in RC cells in vitro. ERRα mRNA and protein were expressed at all developmental stages from early osteoprogenitors to bone-forming osteoblasts, but protein was most abundant in mature cuboidal osteoblasts. To assess a functional role for ERRα in osteoblast differentiation and bone formation, we blocked its expression by antisense oligonucleotides in either proliferating or differentiating RC cell cultures and found inhibition of cell growth and a proliferation-independent inhibition of differentiation. On the other hand, ERRα overexpression in RC cells increased differentiation and maturation of progenitors to mature bone-forming cells. Our findings show that ERRα is highly expressed throughout the osteoblast developmental sequence and plays a physiological role in differentiation and bone formation at both proliferation and differentiation stages. In addition, we found that manipulation of receptor levels in the absence of known ligand is a fruitful approach for functional analysis of this orphan receptor and identification of potential target genes.


2021 ◽  
Author(s):  
Kohei Omachi ◽  
Jeffrey H Miner

CRISPR/Cas9-mediated transcriptional activation (CRISPRa) is a powerful tool for investigating complex biological phenomena. Although CRISPRa approaches based on VP64 have been widely studied in both cultured cells and in animal models and exhibit great versatility for various cell types and developmental stages in vivo, different dCas9-VP64 versions have not been rigorously compared. Here, we compared different dCas9-VP64 constructs in identical contexts, including the cell lines used and the transfection conditions, for their ability to activate endogenous and exogenous genes. Moreover, we investigated the optimal approach for VP64 addition to VP64- and p300-based constructs. We found that MS2-MCP-scaffolded VP64 enhanced dCas9-VP64 and dCas9-p300 activity better than did direct VP64 fusion to the N-terminus of dCas9. dCas9-VP64+MCP-VP64 and dCas9-p300+MCP-VP64 were superior to VP64-dCas9-VP64 for all target genes tested. Furthermore, multiplexing gRNA expression with dCas9-VP64+MCP-VP64 or dCas9-p300+MCP-VP64 significantly enhanced endogenous gene activation to a level comparable to CRISPRa-SAM with a single gRNA. Our findings demonstrate improvement of the dCas9-VP64 CRISPRa system and contribute to development of a versatile, efficient CRISPRa platform.


Sign in / Sign up

Export Citation Format

Share Document