scholarly journals FAM3A Protects Against Glutamate-Induced Toxicity by Preserving Calcium Homeostasis in Differentiated PC12 Cells

2017 ◽  
Vol 44 (5) ◽  
pp. 2029-2041 ◽  
Author(s):  
Qing Song ◽  
Wen-Li Gou ◽  
Yu-Liang Zou

Background/Aims: Stroke is the leading cause of adult disability, and glutamate-induced dysregulation of intracellular Ca2+ homeostasis is a key mechanism. FAM3A is the first member of the family with sequence similarity 3 (FAM3) gene family, and its biological function remains largely unknown. We have recently reported that FAM3A exerts protective effects against oxidative stress and mitochondrial dysfunction in HT22 cells. Methods: Here, we investigated the protective effects of FAM3A using a glutamate-induced neuronal injury model in nerve growth factor (NGF)-differentiated PC12 cells. The protective effects were determined by measuring lactate dehydrogenase (LDH) release, apoptosis and mitochondrial oxidative stress. Ca2+ imaging was performed to detect changes in intracellular Ca2+ concentration in PC12 cells. The related molecular mechanisms were investigated by fluorescence staining, coimmunoprecipitation (Co-IP) and western blotting. Results: Upregulation of FAM3A by lentivirus transfection markedly decreased LDH release, inhibited apoptosis and reduced mitochondrial oxidative stress, which were accompanied by alleviated intracellular Ca2+ levels as measured by calcium imaging. The results of western blotting showed that FAM3A significantly decreased the surface expression of metabotropic glutamate receptor 1/5 (mGluR1/5), with no effect on the expression of N-methyl-d-aspartic acid receptor (NMDAR) or α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) subunits. FAM3A overexpression also inhibited the intracellular Ca2+ release mediated by mGluR1/5 and inositol 1,4,5-trisphosphate receptor (IP3R), but not the ryanodine receptor (RyR). In addition, FAM3A significantly attenuated the store-operated calcium entry (SOCE) induced by thapsigargin (Tg), but the expression of SOCE-related proteins was not altered. The results of coimmunoprecipitation (Co-IP) showed that FAM3A disrupted the interaction of stromal interaction molecule 1 (STIM1) with Orai1 triggered by glutamate. Conclusion: These results suggest that the upregulation of FAM3A protects against glutamate-induced dysfunction of Ca2+ homeostasis not only by inhibiting mGluR1/5-dependent endoplasmic reticulum (ER) Ca2+ release, but also by attenuating SOCE mediated by the STIM1-Orai1 interaction.

2018 ◽  
Author(s):  
Jie Zhang ◽  
Yunyi Hong ◽  
Wei Cao ◽  
Haibo Shi ◽  
Weihai Ying

NAD+ administration can produce profound beneficial effects in the animal models of aging and a number of diseases. Since oxidative stress plays key pathological roles in aging and multiple major disorders, it is crucial to elucidate the mechanisms underlying the protective effects of NAD+ administration on oxidative stress-induced cell death. Previous studies have suggested that NAD+ treatment can decrease oxidative cell death indirectly by such mechanisms as preventing mitochondrial permeability transition, while it is unclear if NAD+ administration may decrease oxidative cell death by increasing directly the antioxidant capacity of the cells. Our current study used rotenone-treated differentiated PC12 cells as a cellular model to test our hypothesis that NAD+ treatment may increase directly the antioxidant capacity of the cells exposed to oxidative stress. Our study has indicated that NAD+ treatment can significantly attenuate the rotenone-induced increase in oxidative stress in the cells. Moreover, NAD+ treatment can significantly enhance the GSH/GSSG ratio, a major index of antioxidant capacity, of rotenone-treated cells. Collectively, our study has provided the first evidence indicating that NAD+ treatment can increase directly the antioxidant capacity of cells exposed to oxidative stress. These findings have suggested a novel mechanism underlying the profound protective effects of NAD+ administration in numerous disease models: NAD+ administration can decrease oxidative stress-induced cell death by enhancing directly the antioxidant capacity of the cells. Our finding has also highlighted the nutritional potential of NAD+.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yunkyoung Lee ◽  
Hee-Sook Jun ◽  
Yoon Sin Oh

The extract of Psoralea corylifolia seeds (PCE) has been widely used as a herbal medicine because of its beneficial effect on human health. In this study, we investigated the protective effects and molecular mechanisms of PCE on palmitate- (PA-) induced toxicity in PC12 cells, a neuron-like cell line. PCE significantly increased cell viability in PA-treated PC12 cells and showed antiapoptotic effects, as evidenced by decreased expression of cleaved caspase-3, cleaved poly(ADP-ribose) polymerase, and bax protein as well as increased expression of bcl-2 protein. In addition, PCE treatment reduced PA-induced reactive oxygen species production and upregulated mRNA levels of antioxidant genes such as nuclear factor (erythroid-derived 2)-like 2 and heme oxygenase 1. Moreover, PCE treatment recovered the expression of autophagy marker genes such as beclin-1 and p62, which was decreased by PA treatment. Treatment with isopsoralen, one of the major components of PCE extract, also recovered the expression of autophagy marker genes and reduced PA-induced apoptosis. In conclusion, PCE exerts protective effects against lipotoxicity via its antioxidant function, and this effect is mediated by activation of autophagy. PCE might be a potential pharmacological agent to protect against neuronal cell injury caused by oxidative stress or lipotoxicity.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yan-Fang Xian ◽  
Zhi-Xiu Lin ◽  
Qing-Qiu Mao ◽  
Jian-Nan Chen ◽  
Zi-Ren Su ◽  
...  

The neurotoxicity of amyloid-β(Aβ) has been implicated as a critical cause of Alzheimer’s disease. Isorhynchophylline (IRN), an oxindole alkaloid isolated fromUncaria rhynchophylla,exerts neuroprotective effect againstAβ25–35-induced neurotoxicityin vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of IRN againstAβ25–35-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Pretreatment with IRN significantly increased the cell viability, inhibited the release of lactate dehydrogenase and the extent of DNA fragmentation inAβ25–35-treated cells. IRN treatment was able to enhance the protein levels of phosphorylated Akt (p-Akt) and glycogen synthase kinase-3β(p-GSK-3β). Lithium chloride blockedAβ25–35-induced cellular apoptosis in a similar manner as IRN, suggesting that GSK-3βinhibition was involved in neuroprotective action of IRN. Pretreatment with LY294002 completely abolished the protective effects of IRN. Furthermore, IRN reversedAβ25–35-induced attenuation in the level of phosphorylated cyclic AMP response element binding protein (p-CREB) and the effect of IRN could be blocked by the PI3K inhibitor. These experimental findings unambiguously suggested that the protective effect of IRN againstAβ25–35-induced apoptosis in PC12 cells was associated with the enhancement of p-CREB expression via PI3K/Akt/GSK-3βsignaling pathway.


Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 867 ◽  
Author(s):  
Hyun Park ◽  
Jong Kang ◽  
Myung Lee

1-O-Hexyl-2,3,5-trimethylhydroquinone (HTHQ) has previously been found to have effective anti-oxidant and anti-lipid-peroxidative activity. We aimed to elucidate whether HTHQ can prevent dopaminergic neuronal cell death by investigating the effect on l-DOPA-induced cytotoxicity in PC12 cells. HTHQ protected from both l-DOPA-induced cell death and superoxide dismutase activity reduction. When assessing the effect of HTHQ on oxidative stress-related signaling pathways, HTHQ inhibited l-DOPA-induced phosphorylation of sustained extracellular signal-regulated kinases (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK1/2). HTHQ also normalized l-DOPA-reduced Bcl-2-associated death protein (Bad) phosphorylation and Bcl-2-associated X protein (Bax) expression, promoting cell survival. Taken together, HTHQ exhibits protective effects against l-DOPA-induced cell death through modulation of the ERK1/2-p38MAPK-JNK1/2-Bad-Bax signaling pathway in PC12 cells. These results suggest that HTHQ may show ameliorative effects against oxidative stress-induced dopaminergic neuronal cell death, although further studies in animal models of Parkinson’s disease are required to confirm this.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Peipei Wang ◽  
Mingyi Zhao ◽  
Zhiheng Chen ◽  
Guojiao Wu ◽  
Masayuki Fujino ◽  
...  

Neonatal hypoxic-ischemic encephalopathy (HIE) is a leading cause of death in neonates with no effective treatments. Recent advancements in hydrogen (H2) gas offer a promising therapeutic approach for ischemia reperfusion injury; however, the impact of this approach for HIE remains a subject of debate. We assessed the therapeutic effects of H2 gas on HIE and the underlying molecular mechanisms in a rat model of neonatal hypoxic-ischemic brain injury (HIBI). H2 inhalation significantly attenuated neuronal injury and effectively improved early neurological outcomes in neonatal HIBI rats as well as learning and memory in adults. This protective effect was associated with initiation time and duration of sustained H2 inhalation. Furthermore, H2 inhalation reduced the expression of Bcl-2-associated X protein (BAX) and caspase-3 while promoting the expression of Bcl-2, nuclear factor erythroid-2-related factor 2, and heme oxygenase-1 (HO-1). H2 activated extracellular signal-regulated kinase and c-Jun N-terminal protein kinase and dephosphorylated p38 mitogen-activated protein kinase (MAPK) in oxygen-glucose deprivation/reperfusion (OGD/R) nerve growth factor-differentiated PC12 cells. Inhibitors of MAPKs blocked H2-induced HO-1 expression. HO-1 small interfering RNA decreased the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and sirtuin 1 (SIRT1) and reversed the protectivity of H2 against OGD/R-induced cell death. These findings suggest that H2 augments cellular antioxidant defense capacity through activation of MAPK signaling pathways, leading to HO-1 expression and subsequent upregulation of PGC-1α and SIRT-1 expression. Thus, upregulation protects NGF-differentiated PC12 cells from OGD/R-induced oxidative cytotoxicity. In conclusion, H2 inhalation exerted protective effects on neonatal rats with HIBI. Early initiation and prolonged H2 inhalation had better protective effects on HIBI. These effects of H2 may be related to antioxidant, antiapoptotic, and anti-inflammatory responses. HO-1 plays an important role in H2-mediated protection through the MAPK/HO-1/PGC-1α pathway. Our results support further assessment of H2 as a potential therapeutic for neurological conditions in which oxidative stress and apoptosis are implicated.


2019 ◽  
Vol 8 (5) ◽  
pp. 641-653 ◽  
Author(s):  
Jinbao Gao ◽  
Yunjun Li ◽  
Wende Li ◽  
Haijiang Wang

Abstract Neuronal death caused by inflammatory cytokine-mediated neuroinflammation is being extensively explored. Thioredoxin reductase (TrxR) 2 is a novel mediator of inflammation response. In the current study, we focus on the mechanisms of TrxR2 overexpression in inflammation-mediated neuronal death. LPS was used to induce neuroinflammation in N2a cells in vitro. Adenovirus-loaded TrxR2 was transfected into N2a cells to up-regulate TrxR2 expression. Then, cell viability was determined via MTT assay and TUNEL assay. Apoptosis was measured via western blotting and ELISA. Oxidative stress was detected via ELISA and flow cytometry. A pathway inhibitor was used to verify the role of the Akt–Parkin pathway in the LPS-mediated N2a cell death in the presence of TrxR2 overexpression. With the help of immunofluorescence assay and western blotting, we found that TrxR2 expression was significantly reduced in response to LPS treatment, and this effect was associated with N2a cell death via apoptosis. At the molecular level, TrxR2 overexpression elevated the activity of the Akt–Parkin pathway, as evidenced by the increased expression of p-Akt and Parkin. Interestingly, inhibition of the Akt–Parkin pathway abolished the regulatory effect of TrxR2 on LPS-treated N2a cells, as evidenced by the decreased cell viability and increased apoptotic ratio. Besides, TrxR2 overexpression also reduced oxidative stress, inflammation factor transcription and mitochondrial apoptosis. However, inhibition of Akt–Parkin axis abrogated the protective effects of TrxR2 on redox balance, mitochondrial performance and cell survival. LPS-mediated neuronal death was linked to a drop in TrxR2 overexpression and the inactivation of the Akt–Parkin pathway. Overexpression of TrxR2 sustained mitochondrial function, inhibited oxidative stress, repressed inflammation response, and blocked mitochondrial apoptosis, finally sending a pro-survival signal for the N2a cells in the setting of LPS-mediated inflammation environment.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Hai-tao Xiao ◽  
Jiao Peng ◽  
Bo Wen ◽  
Dong-dong Hu ◽  
Xiao-peng Hu ◽  
...  

Indigo naturalis (also known as Qing-dai, or QD), a traditional Chinese medicine, has been widely used as an anticolitis regimen in the clinical practice of Chinese medicine. However, the precise mechanisms behind its efficacy remain unknown. We investigated the protective effects and associated molecular mechanisms of QD in DSS-induced colitis in mice. We found that QD administration attenuated DSS-induced colon shortening, tissue damage, and the disease activity index during the onset of colitis. Moreover, QD administration significantly suppressed colonic MPO activity and increased the activities of colonic T-SOD, CAT, and GSH-Px, as well the expression of p-AMPK and Nrf-2 in colon tissues of colitic mice. In addition, QD was capable of reducing the colonic Th1 and Th17 cell cytokines, the frequencies of Th1 and Th17 cells, and the phosphorylation of p-STAT1 and p-STAT3 in the mesenteric lymph nodes of colitic mice. An in vitro assay showed that QD significantly suppressed the differentiation of Th1 and Th17 cells. These findings suggest that QD has the potential to alleviate experimental colitis by suppressing colonic oxidative stress and restraining colonic Th1/Th17 responses, which are associated with activating AMPK/Nrf-2 signals and inhibiting STAT1/STAT3 signals, respectively. These findings also support QD as an effective regimen in the treatment of IBD.


2013 ◽  
Vol 33 (2) ◽  
Author(s):  
Guillaume Van Beersel ◽  
Eliane Tihon ◽  
Stéphane Demine ◽  
Isabelle Hamer ◽  
Michel Jadot ◽  
...  

NCLs (neuronal ceroid lipofuscinoses) form a group of eight inherited autosomal recessive diseases characterized by the intralysosomal accumulation of autofluorescent pigments, called ceroids. Recent data suggest that the pathogenesis of NCL is associated with the appearance of fragmented mitochondria with altered functions. However, even if an impairement in the autophagic pathway has often been evoked, the molecular mechanisms leading to mitochondrial fragmentation in response to a lysosomal dysfunction are still poorly understood. In this study, we show that fibroblasts that are deficient for the TPP-1 (tripeptidyl peptidase-1), a lysosomal hydrolase encoded by the gene mutated in the LINCL (late infantile NCL, CLN2 form) also exhibit a fragmented mitochondrial network. This morphological alteration is accompanied by an increase in the expression of the protein BNIP3 (Bcl2/adenovirus E1B 19 kDa interacting protein 3) as well as a decrease in the abundance of mitofusins 1 and 2, two proteins involved in mitochondrial fusion. Using RNAi (RNA interference) and quantitative analysis of the mitochondrial morphology, we show that the inhibition of BNIP3 expression does not result in an increase in the reticulation of the mitochondrial population in LINCL cells. However, this protein seems to play a key role in cell response to mitochondrial oxidative stress as it sensitizes mitochondria to antimycin A-induced fragmentation. To our knowledge, our results bring the first evidence of a mechanism that links TPP-1 deficiency and oxidative stress-induced changes in mitochondrial morphology.


2010 ◽  
Vol 26 (5) ◽  
pp. 297-308 ◽  
Author(s):  
RM Satpute ◽  
J. Hariharakrishnan ◽  
R. Bhattacharya

Cyanide is a mitochondrial poison, which is ubiquitously present in the environment. Cyanide-induced oxidative stress is known to play a key role in mediating the neurotoxicity and cell death in rat pheochromocytoma (PC12) cells. PC12 cells are widely used as a model for neurotoxicity assays in vitro. In the present study, we investigated the protective effects of alpha-ketoglutarate (A-KG), a potential cyanide antidote, and N-acetyl cysteine (NAC), an antioxidant against toxicity of cyanide in PC12 cells. Cells were treated with various concentrations (0.625—1.25 mM) of potassium cyanide (KCN) for 4 hours, in the presence or absence of simultaneous treatment of A-KG (0.5 mM) and NAC (0.25 mM). Cyanide caused marked decrease in the levels of cellular antioxidants like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Lipid peroxidation indicated by elevated levels of malondialdehyde (MDA) was found to be accompanied by decreased levels of reduced glutathione (GSH) and total antioxidant status (TAS) of the cells. Cyanide-treated cells showed notable increase in caspase-3 activity and induction of apoptotic type of cell death after 24 hours. A-KG and NAC alone were very effective in restoring the levels of GSH and TAS, but together they significantly resolved the effects of cyanide on antioxidant enzymes, MDA levels, and caspase-3 activity. The present study reveals that combination of A-KG and NAC has critical role in abbrogating the oxidative stress-mediated toxicity of cyanide in PC12 cells. The results suggest potential role of A-KG and NAC in cyanide antagonism.


2015 ◽  
Vol 36 (3) ◽  
pp. 966-979 ◽  
Author(s):  
Hao Liu ◽  
Ping Mao ◽  
Jia Wang ◽  
Tuo Wang ◽  
Chang-Hou Xie

Background: Parkinson disease (PD) is a common adult-onset neurodegenerative disorder, and PD related neuronal injury is associated with oxidative stress and mitochondrial dysfunction. Allicin, the main biologically active compound derived from garlic, has been shown to exert various anti-oxidative and anti-apoptotic activities in in vitro and in vivo studies. Methods: The present study aimed to investigate the potential protective role of allicin in an in vitro PD model induced by 6-hydroxydopamine (6-OHDA) in PC12 cells. The protective effects were measured by cell viability, decreased lactate dehydrogenase (LDH) release and flow cytometry, and the anti-oxidative activity was determined by reactive oxygen species (ROS) generation, lipid peroxidation and the endogenous antioxidant enzyme activities. Mitochondrial function in PC12 cells was detected by mitochondrial membrane potential (MMP) collapse, cytochrome c release, mitochondrial ATP synthesis, and the mitochondrial Ca2+ buffering capacity. To investigate the potential mechanism, we also measured the expression of mitochondrial biogenesis factors, mitochondrial morphological dynamic changes, as well as detected mitochondrial dynamic proteins by western blot. Results: We found that allicin treatment significant increased cell viability, and decreased LDH release and apoptotic cell death after 6-OHDA exposure. Allicin also inhibited ROS generation, reduced lipid peroxidation and preserved the endogenous antioxidant enzyme activities. These protective effects were associated with suppressed mitochondrial dysfunction, as evidenced by decreased MMP collapse and cytochrome c release, preserved mitochondrial ATP synthesis, and the promotion of mitochondrial Ca2+ buffering capacity. In addition, allicin significantly enhanced mitochondrial biogenesis and prevented fragmentation of mitochondrial network after 6-OHDA treatment. The results of western blot analysis showed that the 6-OHDA induced decrease in the expression of optic atrophy type 1 (Opa-1), increase in mitochondrial fission 1 (Fis-1) and dynamin-related protein 1 (Drp-1) were all partially revised by allicin. Conclusion: In summary, our data strongly suggested that allicin treatment can exert protective effects against PD related neuronal injury through inhibiting oxidative stress and mitochondrial dysfunction with dynamic changes.


Sign in / Sign up

Export Citation Format

Share Document