In vitro Antichlamydial Activity of 1,2,3,5-Tetrasubstituted Pyrrole Derivatives

Chemotherapy ◽  
2018 ◽  
Vol 63 (2) ◽  
pp. 95-99
Author(s):  
Hongzhang Ji ◽  
Changyue Wu ◽  
Min Ni ◽  
Nannan Feng ◽  
Chan Wang ◽  
...  

Background: Chlamydia is a group of bacterial pathogens distributed worldwide that can lead to serious reproductive and other health problems. The rise of antibiotic-resistant pathogens promotes the development of novel antichlamydial agents. The aim of this study is to assess in vitro antichlamydial activity of our previously synthesized 1,2,3,5- tetrasubstituted pyrroles. Methods: The derivatives were screened for their antichlamydial activity against three Chlamydia strains by calculating IC50 values using concentration-response inhibition data between 1 and 32 μM. The action of the compounds on Chlamydia elementary body (EB) infectivity and the impact of the chemicals’ administration time on their antichlamydial effect were evaluated to reveal the inhibitory mechanism. Results: Some of the compounds moderately inhibited the Chlamydia strains. Compound 10 exhibited the strongest inhibitory activity, with IC50 values from 4.34 to 5.83 μM. These pyrrole derivatives inhibited Chlamydia infection by reducing EB infectivity during the early stage and disturbing Chlamydia growth by targeting the early-to-middle stage prior to 12 h of the chlamydial life cycle. Conclusion: Our findings highlight the potential of 1,2,3,5-tetrasubstituted pyrrole derivatives as promising lead molecules for the development of antichlamydial agents.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 892
Author(s):  
Elisa L. J. Moya ◽  
Elodie Vandenhaute ◽  
Eleonora Rizzi ◽  
Marie-Christine Boucau ◽  
Johan Hachani ◽  
...  

Central nervous system (CNS) diseases are one of the top causes of death worldwide. As there is a difficulty of drug penetration into the brain due to the blood–brain barrier (BBB), many CNS drugs treatments fail in clinical trials. Hence, there is a need to develop effective CNS drugs following strategies for delivery to the brain by better selecting them as early as possible during the drug discovery process. The use of in vitro BBB models has proved useful to evaluate the impact of drugs/compounds toxicity, BBB permeation rates and molecular transport mechanisms within the brain cells in academic research and early-stage drug discovery. However, these studies that require biological material (animal brain or human cells) are time-consuming and involve costly amounts of materials and plastic wastes due to the format of the models. Hence, to adapt to the high yields needed in early-stage drug discoveries for compound screenings, a patented well-established human in vitro BBB model was miniaturized and automated into a 96-well format. This replicate met all the BBB model reliability criteria to get predictive results, allowing a significant reduction in biological materials, waste and a higher screening capacity for being extensively used during early-stage drug discovery studies.


2017 ◽  
Vol 43 (1) ◽  
pp. 20-25
Author(s):  
Rosane Baldiga Tonin ◽  
Erlei Melo Reis ◽  
Aveline Avozani

ABSTRACT Reports of failure in the chemical control of wheat yellow leaf spot led to determination of the sensitivity of Drechslera tritici-repentis (Dtr) to the fungicides quinone outside inhibitors (QoIs) and demethylation inhibitors (DMIs). The IC50 was obtained for strobilurins (azoxystrobin, kresoxim-methyl, picoxystrobin and pyraclostrobin) and for triazoles (cyproconazole, epoxiconazole, propiconazole, prothioconazole and tebuconazole), using five Dtr isolates. Seven concentrations of the fungicides were tested in the bioassay: 0.00; 0.01; 0.10; 1.00; 10:00 and 20.00 and 40.00 mg/L active ingredient (a.i.). Assays consisted of completely randomized design and four replicates. Each experiment was performed twice, using the average of the two tests for statistical analysis. The percentage inhibition data for conidial germination (QoIs) and for mycelial growth (DMIs) were subjected to logarithmic regression analysis, calculating the 50% inhibitory concentration (IC50) based on the generated equation. There was a reduction in the sensitivity of Dtr isolates to strobilurins. IC50 values ranged from 0.58 to > 40.00 mg/L. The lowest sensitivity of isolates was detected for azoxystrobin, kresoxim-methyl, picoxystrobin and trifloxystrobin. Pyraclostrobin was most efficient, showing IC50 between 0.58 and 1.03 mg/L. The IC50 ranged from 0.35 to 1.37 mg/L for epoxiconazole, from 0.49 to 1.28 mg/L for propiconazole and from 1.41 to 2.34 mg/L for tebuconazole. Prothioconazole was most potent, showing IC50 between 0.09 and 0.21 mg/L. The hypothesis that the control failure can be attributed to the reduced Dtr sensitivity to the fungicides QoIs and DMIs was confirmed.


2006 ◽  
Vol 18 (2) ◽  
pp. 200
Author(s):  
S. Ueno ◽  
M. Kurome ◽  
R. Tomii ◽  
K. Hiruma ◽  
N. Maeda ◽  
...  

It is assumed that if porcine early-stage embryos with damages in their zonae pellucidae are transplanted to the recipient's oviduct, they may suffer from mechanical and immunological stresses by oviduct contraction and the recipient's immune response. This study aimed to examine the impact of zona pellucida damages, which might arise during nuclear transfer and intra cytoplasmic sperm injection (ICSI), on the development and survival of transplanted embryos. Cumulus-oocyte complexes were collected from ovaries obtained at a local slaughterhouse and matured in vitro in NCSU23 to prepare MII-stage oocytes. The zonae pellucidae of these oocytes were either penetrated with 8- to 10-�m square-ended microinjection pipettes or incised with 35- to 40-�m beveled enucleation pipettes. Intact oocytes were used as controls. The oocytes were electroactivated to induce parthenogenesis and transplanted to the oviducts of estrus-synchronized recipient gilts (estrus-synchronized with 1000 IU eCG and 1500 IU hCG). After 5 to 7 days, the recipient uteri were flushed with PBS supplemented with 1% fetal bovine serum (FBS) to collect embryos, and their development (morula-blastocyst stage embryos/collected embryos) and survival (viable embryos/collected embryos) were determined. In total, 221 zona-penetrated, 129 zona-incised, and 57 intact embryos were transplanted to four, two and two gilts, respectively. The efficiency of embryo recovery was similar in all groups (59.0 to 81.8%). However, the zona-penetrated and zona-incised embryos showed inconsistent development and survival compared with controls; the development and survival rate were 92.6% (25/27) to 96.7% (29/30) and 77.8% (21/27) to 96.7% (29/30) in control embryos, respectively, whereas those of zona-penetrated embryos were 57.1% (28/49) to 95.7% (22/23) and 8.2% (4/49) to 78.3% (18/30), and those of zona-incised embryos were 47.6% (30/63) to 92.3% (36/39) and 23.8% (15/63) to 92.3% (22/23), respectively. Large foci of cells that appeared to be macrophage giant cells were observed at the surface or inside of the degenerated zona-damaged embryos. These results indicate that the recipient's immune response may impair development after transplantation of the embryo to the oviduct, when there is damage in the zona pellucida. This may be one of the factors attributable to the reduced efficiency of live progeny production by ICSI and nuclear transfer. This work was supported by PROBRAIN.


Author(s):  
Yiming Shao ◽  
Yifan Zhao ◽  
Tingting Zhu ◽  
Fen Zhang ◽  
Xiuli Chang ◽  
...  

Paraquat (PQ) is a toxic non-selective herbicide. To date, the effect of PQ on memory immune response is still unknown. We investigated the impact of PQ on memory immune response. Adult C57BL/6 mice were subcutaneously injected with 2 mg/kg PQ, 20 mg/kg PQ or vehicle control every three days for two weeks. A single injection of keyhole limpet hemocyanin (KLH) at day four after the initial PQ treatment was used to induce a primary immune response; a second KLH challenge was performed at three months post the first KLH immunization to induce a secondary immune response. In steady state, treatment with 20 mg/kg PQ reduced the level of serum total IgG, but not that of IgM; treatment with 20 mg/kg PQ decreased the number of effector and memory lymphocytes, but not naïve or inactivated lymphocytes. During the primary immune response to KLH, treatment with 20 mg/kg PQ did not influence the proliferation of lymphocytes or expression of co-stimulatory molecules. Instead, treatment with 20 mg/kg PQ increased the apoptosis of lymphocytes at late stage, but not early stage of the primary immune response. During the secondary immune response to KLH, treatment with 20 mg/kg PQ reduced the serum anti-KLH IgG and KLH-responsive CD4 T cells and B cells. Moreover, effector or activated lymphocytes were more sensitive to PQ-induced apoptosis in vitro. Treatment with 2 mg/kg PQ did not impact memory immune response to KLH. Thus, treatment with 20 mg/kg PQ increased apoptosis of late stage effector cells to yield less memory cells and thereafter impair memory immune response, providing a novel understanding of the immunotoxicity of PQ.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2973-2973
Author(s):  
Clive S. Zent ◽  
Nancy D. Bone ◽  
Susan M. Geyer ◽  
Neil E. Kay

Abstract The monoclonal antibodies (MoAb) alemtuzumab and rituximab have proven efficacy in the treatment of CLL. In addition, alemtuzumab is effective in patients with defective p53 function responding poorly to purine analogue therapy. The action of both MoAb is not completely understood. Proposed mechanisms include complement dependent cytotoxicity (CDC), antibody dependent cellular cytotoxicity (ADCC), and direct induction of apoptosis of CLL B cells. We have done correlative studies on CLL B cells from patients enrolled in a trial of alemtuzumab and rituximab in “high risk” early stage previously untreated CLL to determine: 1. Role of apoptosis induction and CDC in each MoAb and 2. If the addition of rituximab to alemtuzumab increases their in vitro cytotoxicity. Patients and Methods: Patients with early stage, previously untreated, high risk CLL are treated with subcutaneous alemtuzumab (dose escalation over 3 days then 30 mg Mon-Wed-Fri for 4 weeks) and rituximab (375 mg/m2/dose weekly from day 8 x 4 doses). High risk disease was defined as one or more of the following features of the CLL B cell clone: (1) 17p13−; (2) 11q22−; (3) unmutated IgVH (< 2%) and either CD38+ or ZAP-70+. Blood B lymphocytes collected prior to the start of therapy were tested for response to MoAb in vitro. Cells were cultured at 2 x 106/ml in AIM-V medium using standard conditions. Alemtuzumab and rituximab were used at 20 μg/ml and complement as 10% of 40 CH50 units/ml human serum. The impact of the MoAb was measured by counting viable cells (trypan blue negative) and measuring early apoptosis (annexin V) and cell death (cell membrane permeability to propidium iodide) using flow cytometry at 1 hour, and then daily for 3 days. Results: Treatment caused rapid resolution of lymphocytosis in all 7 patients and 3 patients were negative for circulating CLL cells using a highly sensitive 3 color flow cytometry (CD5+/CD19+/CD79b-) after therapy. All patients had a clinical response (2 CR, 5 PR). Alemtuzumab and complement were rapidly cytotoxic to most CLL cells. Mean cell viability was 39% (sd: 8%) after 1 hour of incubation. Cytotoxicity was similar in all samples irrespective of FISH defects, IgVH mutation status, and in vitro resistance to F-ara-A (n = 3). Alemtuzumab was inactive in the absence of complement for all samples. Rituximab alone and together with complement did not induce cytotoxicity or apoptosis. However, the addition of rituximab to alemtuzumab and complement did increase CDC where the number of viable cells was significantly lower at 1, 24, 48, and 72 hours incubation (p = 0.075, 0.047, 0.031, 0.027, respectively, for pairwise comparisons). CLL cells surviving alemtuzumab CDC subsequently had a lower level of apoptosis than control cells, implying a selection for resistant cells. Alemtuzumab CDC on this residual population was not increased at higher concentrations of alemtuzumab or complement. This mechanism of CDC resistance is currently under investigation. Conclusion: These data suggest that alemtuzumab CDC is an important mechanism of action in patients with CLL. However, alemtuzumab CDC kills only about 61% of CLL cells in vitro, and the surviving cells are more resistant to spontaneous apoptosis. This suggests that cells that survive alemtuzimab CDC contribute to disease progression or relapse. We intend to elucidate the mechanism of this resistance using our in vitro model with the hope that treatment strategies can be deployed to remove this residual CLL B cell clone.


2019 ◽  
pp. 96-104
Author(s):  
N. Hrynchuk ◽  
N. Vrynchanu

The emergence and spread of antibiotic-resistant strains of microorganisms reduces the effectiveness of antibiotic therapy and requires finding solutions to problems, one of which is the study of antimicrobial properties in drugs of various pharmacological groups. The purpose of the work was to summarize the data on the antibacterial activity of thioridazine and its derivatives to determine the feasibility and prospects of creating new antibacterial drugs on their basis. The paper presents literature data on the effects of thioridazine on the causative agent of tuberculosis, antistaphylococcal activity, susceptibility of plasmodium and trypanosoma. The antibacterial activity of the drug was established within in vitro studies with the determination of MIC towards gram-positive and gram-negative microorganisms, ex vivo using macrophage lines, as well as within in vivo experiments on mice. It is established that the neuroleptic thioridazine is characterized by pronounced anti-tuberculosis activity, the mechanism of action is associated with the impact on the cell membrane of M. tuberculosis, inactivation by calmodulin and inhibition of specific NADH-dehydrogenase type II. The literature data indicate that thioridazine is able to increase the activity of isoniazid against the strains of mycobacteria that are susceptible and resistant to its action. It has been established that resistance to thioridazine in antibiotic-resistant M. tuberculosis strains is not formed. The drug is characterized by its ability to inhibit the growth and reproduction of both methicylin-sensitive (MSSA) and methicilin-resistant (MRSA) strains of Staphylococcus aureus, which has been proven within in vitro experiments. The effectiveness of thioridazine has been proven within in vivo experiments in case of skin infection and sepsis caused by S. aureus. Antimicrobial effect of the drug is also observed towards to plasmodium (P. falciparum) and trypanosomes (Trypanosoma spp.). Currently, the synthesis of thioridazine derivatives is carried out to identify compounds with a pronounced antibacterial effect. Some of the first synthesized compounds are not inferior or superior to thioridazine by the inhibitory effect. Thus, these data suggest that drugs of different pharmacological groups, including drugs that affect the nervous system - thioridazine and its derivatives, can be a source of replenishment of the arsenal of antimicrobial drugs to control such threatening infections as tuberculosis and diseases caused by polyresistant strains of microorganisms.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3148
Author(s):  
Mathilde Bouché ◽  
Bruno Vincent ◽  
Thierry Achard ◽  
Stéphane Bellemin-Laponnaz

A series of octahedral platinum(IV) complexes functionalized with both N-heterocyclic carbene (NHC) ligands were synthesized according to a straightforward procedure and characterized. The coordination sphere around the metal was varied, investigating the influence of the substituted NHC and the amine ligand in trans position to the NHC. The influence of those structural variations on the chemical shift of the platinum center were evaluated by 195Pt NMR. This spectroscopy provided more insights on the impact of the structural changes on the electronic density at the platinum center. Investigation of the in vitro cytotoxicities of representative complexes were carried on three cancer cell lines and showed IC50 values down to the low micromolar range that compare favorably with the benchmark cisplatin or their platinum(II) counterparts bearing NHC ligands.


Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 32
Author(s):  
Vincenzo Sicari ◽  
Monica R. Loizzo ◽  
Ana Sanches Silva ◽  
Rosa Romeo ◽  
Giovanni Spampinato ◽  
...  

The impact of blanching on the phytochemical content and bioactivity of Hypochaeris laevigata (HL), Hypochaeris radicata (HR), Hyoseris radiata (HRA), and Hyoseris lucida subsp. taurina (HT) leaves was studied and compared to fresh plant materials and residual blanching water. For this purpose, total phenols, flavonoids, carotenoids, and chlorophyll contents were quantified. The antioxidant effect was investigated by using different in vitro tests (β-carotene, ferric reducing ability power (FRAP), 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH), whereas the potential inhibitory activity of key enzymes linked to obesity was screened against lipase, α-amylase, and α-glucosidase. Generally, the phytochemical content followed the trend: fresh > blanching water > blanched samples. The same trend was observed in the antioxidant activity independently of the applied test as well as in the inhibition of lipase and carbohydrates-hydrolysing enzymes. In particular, fresh Hypochaeris laevigata (HL1) showed the lowest inhibitory concentration 50% (IC50) values of 31.3 and 42.7 μg/mL, against α-glucosidase and α-amylase, respectively, whereas fresh Hyoseris radiata (HRA1) showed the most promising hypolipidemic activity (IC50 value of 39.8 μg/mL). Collectively, these results support the health effect of these wild plants and demonstrated that blanching water should be reused in food preparation since it is a good source of bioactive compounds and its consumption should be recommended in order to increase the uptake of micronutrients.


2021 ◽  
Vol 28 (6) ◽  
pp. 5054-5066
Author(s):  
Flavia Bociort ◽  
Ioana Gabriela Macasoi ◽  
Iasmina Marcovici ◽  
Andrei Motoc ◽  
Cristina Grosu ◽  
...  

Malignant melanoma (MM) represents the most life-threatening skin cancer worldwide, with a narrow and inefficient chemotherapeutic arsenal available in advanced disease stages. Lupeol (LUP) is a triterpenoid-type phytochemical possessing a broad spectrum of pharmacological properties, including a potent anticancer effect against several neoplasms (e.g., colorectal, lung, and liver). However, its potential as an anti-melanoma agent has been investigated to a lesser extent. The current study focused on exploring the impact of LUP against two human MM cell lines (A375 and RPMI-7951) in terms of cell viability, confluence, morphology, cytoskeletal distribution, nuclear aspect, and migration. Additionally, the in ovo antiangiogenic effect has been also examined. The in vitro results indicated concentration-dependent and selective cytotoxicity against both MM cell lines, with estimated IC50 values of 66.59 ± 2.20 for A375, and 45.54 ± 1.48 for RPMI-7951, respectively, accompanied by a reduced cell confluence, apoptosis-specific nuclear features, reorganization of cytoskeletal components, and inhibited cell migration. In ovo, LUP interfered with the process of angiogenesis by reducing the formation of neovascularization. Despite the potential anti-melanoma effect illustrated in our in vitro-in ovo study, further investigations are required to elucidate the underlying LUP-induced effects in A375 and RPMI-7951 MM cells.


1997 ◽  
Vol 32 (2) ◽  
pp. 212-228 ◽  
Author(s):  
Albert B. DeMilo ◽  
Dale B. Gelman ◽  
Barna Bordás

Chitin-synthesis inhibitory effects of nine l-benzoyl-5-phenyl-biurets and six l-benzoyl-5-phenyl-4-thiobiurets were determined in an in vitro assay using male pharate adult claspers of the European corn borer, Ostrinia nubilalis (Hübner). Incorporation of labeled N-acetylglucosamine into the clasper tissue was effectively inhibited by the benzoylbiurets (IC50 values ranged from 0.032 to 8.2 ppm). Quantitative structure-activity relationships of the benzoylbiurets were analyzed by linear regression analysis. The analysis used yellowfever mosquito (Aedes aegypti (L.)) adult emergence data (LC50 values) and in vitro chitin-synthesis inhibition data (IC50 values) as biological endpoints and a set of physicochemical parameters (independent variables) of the para substituent of the anilide moiety. Stepwise regression analysis of the in vivo data provided a significant four-parameter equation involving Hammett σp and Hansch-Fujita π constants, and two indicator variables. Analysis of the in vitro chitin-synthesis inhibition data yielded a significant two-parameter equation incorporating σp and an indicator variable. In vitro larvicidal activity against A. aegypti and the house fly (Musca domestica L.) was enhanced by electron-withdrawing and lipophilic substituents in the para position of the anilide moiety. In contrast, in vitro chitin-synthesis inhibition was favored by electron-donating substituents. It was suggested that the equations derived from in vivo activity data describe mainly pharmacokinetic processes such as transport and metabolism. Structural requirements for intrinsic activity of the benzoylbiurets at the putative receptor site were better represented by the equation derived from the in vitro chitin-synthesis inhibition data.


Sign in / Sign up

Export Citation Format

Share Document