scholarly journals Pathway Analysis Hints Towards Beneficial Effects of Long-Term Vibration on Human Chondrocytes

2018 ◽  
Vol 47 (4) ◽  
pp. 1729-1741 ◽  
Author(s):  
Ronald Lützenberg ◽  
Kendrick Solano ◽  
Christoph Buken ◽  
Jayashree Sahana ◽  
Stefan Riwaldt ◽  
...  

Background/Aims: Spaceflight negatively influences the function of cartilage tissue in vivo. In vitro human chondrocytes exhibit an altered gene expression of inflammation markers after a two-hour exposure to vibration. Little is known about the impact of long-term vibration on chondrocytes. Methods: Human cartilage cells were exposed for up to 24 h (VIB) on a specialised vibration platform (Vibraplex) simulating the vibration profile which occurs during parabolic flights and compared to static control conditions (CON). Afterwards, they were investigated by phase-contrast microscopy, rhodamine phalloidin staining, microarray analysis, qPCR and western blot analysis. Results: Morphological investigations revealed no changes between CON and VIB chondrocytes. F-Actin staining showed no alterations of the cytoskeleton in VIB compared with CON cells. DAPI and TUNEL staining did not identify apoptotic cells. ICAM-1 was elevated and vimentin, beta-tubulin and osteopontin proteins were significantly reduced in VIB compared to CON cells. qPCR of cytoskeletal genes, ITGB1, SOX3, SOX5, SOX9 did not reveal differential regulations. Microarray analysis detected 13 differentially expressed genes, mostly indicating unspecific stimulations. Pathway analyses demonstrated interactions of PSMD4 and CNOT7 with ICAM. Conclusions: Long-term vibration did not damage human chondrocytes in vitro. The reduction of osteopontin protein and the down-regulation of PSMD4 and TBX15 gene expression suggest that in vitro long-term vibration might even positively influence cultured chondrocytes.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Federico Tinarelli ◽  
Elena Ivanova ◽  
Ilaria Colombi ◽  
Erica Barini ◽  
Edoardo Balzani ◽  
...  

Abstract Background DNA methylation has emerged as an important epigenetic regulator of brain processes, including circadian rhythms. However, how DNA methylation intervenes between environmental signals, such as light entrainment, and the transcriptional and translational molecular mechanisms of the cellular clock is currently unknown. Here, we studied the after-hours mice, which have a point mutation in the Fbxl3 gene and a lengthened circadian period. Methods In this study, we used a combination of in vivo, ex vivo and in vitro approaches. We measured retinal responses in Afh animals and we have run reduced representation bisulphite sequencing (RRBS), pyrosequencing and gene expression analysis in a variety of brain tissues ex vivo. In vitro, we used primary neuronal cultures combined to micro electrode array (MEA) technology and gene expression. Results We observed functional impairments in mutant neuronal networks, and a reduction in the retinal responses to light-dependent stimuli. We detected abnormalities in the expression of photoreceptive melanopsin (OPN4). Furthermore, we identified alterations in the DNA methylation pathways throughout the retinohypothalamic tract terminals and links between the transcription factor Rev-Erbα and Fbxl3. Conclusions The results of this study, primarily represent a contribution towards an understanding of electrophysiological and molecular phenotypic responses to external stimuli in the Afh model. Moreover, as DNA methylation has recently emerged as a new regulator of neuronal networks with important consequences for circadian behaviour, we discuss the impact of the Afh mutation on the epigenetic landscape of circadian biology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shojiro Katoh ◽  
Atsuki Fujimaru ◽  
Masaru Iwasaki ◽  
Hiroshi Yoshioka ◽  
Rajappa Senthilkumar ◽  
...  

AbstractRegenerative medicine applications require cells that are not inflicted with senescence after in vitro culture for an optimal in vivo outcome. Methods to overcome replicative senescence include genomic modifications which have their own disadvantages. We have evaluated a three-dimensional (3D) thermo-reversible gelation polymer (TGP) matrix environment for its capabilities to reverse cellular senescence. The expression of senescence-associated beta-galactosidase (SA-βgal) by human chondrocytes from osteoarthritis-affected cartilage tissue, grown in a conventional two-dimensional (2D) monolayer culture versus in 3D-TGP were compared. In 2D, the cells de-differentiated into fibroblasts, expressed higher SA-βgal and started degenerating at 25 days. SA-βgal levels decreased when the chondrocytes were transferred from the 2D to the 3D-TGP culture, with cells exhibiting a tissue-like growth until 42–45 days. Other senescence associated markers such as p16INK4a and p21 were also expressed only in 2D cultured cells but not in 3D-TGP tissue engineered cartilage. This is a first-of-its-kind report of a chemically synthesized and reproducible in vitro environment yielding an advantageous reversal of aging of human chondrocytes without any genomic modifications. The method is worth consideration as an optimal method for growing cells for regenerative medicine applications.


2021 ◽  
Vol 22 (3) ◽  
pp. 1222
Author(s):  
Cristina Cuello ◽  
Cristina A. Martinez ◽  
Josep M. Cambra ◽  
Inmaculada Parrilla ◽  
Heriberto Rodriguez-Martinez ◽  
...  

This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGβ, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.


Author(s):  
Mandy Rauschner ◽  
Luisa Lange ◽  
Thea Hüsing ◽  
Sarah Reime ◽  
Alexander Nolze ◽  
...  

Abstract Background The low extracellular pH (pHe) of tumors resulting from glycolytic metabolism is a stress factor for the cells independent from concomitant hypoxia. The aim of the study was to analyze the impact of acidic pHe on gene expression on mRNA and protein level in two experimental tumor lines in vitro and in vivo and were compared to hypoxic conditions as well as combined acidosis+hypoxia. Methods Gene expression was analyzed in AT1 prostate and Walker-256 mammary carcinoma of the rat by Next Generation Sequencing (NGS), qPCR and Western blot. In addition, the impact of acidosis on tumor cell migration, adhesion, proliferation, cell death and mitochondrial activity was analyzed. Results NGS analyses revealed that 147 genes were uniformly regulated in both cell lines (in vitro) and 79 genes in both experimental tumors after 24 h at low pH. A subset of 25 genes was re-evaluated by qPCR and Western blot. Low pH consistently upregulated Aox1, Gls2, Gstp1, Ikbke, Per3, Pink1, Tlr5, Txnip, Ypel3 or downregulated Acat2, Brip1, Clspn, Dnajc25, Ercc6l, Mmd, Rif1, Zmpste24 whereas hypoxia alone led to a downregulation of most of the genes. Direct incubation at low pH reduced tumor cell adhesion whereas acidic pre-incubation increased the adhesive potential. In both tumor lines acidosis induced a G1-arrest (in vivo) of the cell cycle and a strong increase in necrotic cell death (but not in apoptosis). The mitochondrial O2 consumption increased gradually with decreasing pH. Conclusions These data show that acidic pHe in tumors plays an important role for gene expression independently from hypoxia. In parallel, acidosis modulates functional properties of tumors relevant for their malignant potential and which might be the result of pH-dependent gene expression.


2016 ◽  
Vol 7 (4) ◽  
pp. 1805-1813 ◽  
Author(s):  
Junyi Yang ◽  
Devin J. Rose

A diet high in whole grains, dry beans, and certain vegetables that contributed dietary fiber, plant protein, and B vitamins resulted in high short chain fatty acids, while a diet high in diary and processed meats that provided cholesterol and little fiber resulted in high branched chain fatty acids and ammonia during fecal fermentation of inulin.


2018 ◽  
Vol 110 (7) ◽  
pp. 1356-1366 ◽  
Author(s):  
Vincenza Barbato ◽  
Roberto Gualtieri ◽  
Teresa Capriglione ◽  
Maria Michela Pallotta ◽  
Sabrina Braun ◽  
...  

2021 ◽  
Author(s):  
Jozsef Bodis ◽  
Endre Sulyok ◽  
Akos Varnagy ◽  
Viktória Prémusz ◽  
Krisztina Godony ◽  
...  

Abstract BackgroundThis observational clinical study evaluated the expression levels and predictive values of some apoptosis-related genes in granulosa cells (GCs) and follicular fluid (FF) of women undergoing in vitro fertilization (IVF).Methods GCs and FF were obtained at oocyte retrieval from 31 consecutive patients with heterogeneous infertility diagnosis (age: 34.3±5.8 years, body mass index: 24.02±3.12 kg/m2, duration of infertility: 4.2±2.1 years). mRNA expression of pro-apoptotic (BAX, CASP3, CASP8) and anti-apoptotic (BCL2, AMH, AMHR, FSHR, LHR, CYP19A1) factors was determined by quantitative RT-PCR using ROCHE LightCycler 480. Results No significant difference in GC or FF mRNA expression of pro- and anti-apoptotic factors could be demonstrated between IVF patients with (9 patients) or without (22 patients) clinical pregnancy. Each transcript investigated was detected in FF, but their levels were markedly reduced and independent of those in GCs. The number of retrieved oocytes was positively associated with GC AMHR (r=0.393, p=0.029), but the day of embryo transfer was negatively associated with GC LHR (r=-0.414, p=0.020) and GC FSHR transcripts (r=-0.535, p=0.002). When pregnancy positive group was analysed separately the impact of apoptosis- related gene expressions on some selected measures of IVF success could be observed. Strong positive relationship was found between gene expression levels of pro- and anti-apoptotic factors in GCs.ConclusionOur study provides only marginal evidences for the apoptosis dependence of IVF outcome and suggests that the apoptosis process induces adaptive increases of the anti-apoptotic gene expression to attenuate apoptosis and to protect cell survival.


2021 ◽  
Author(s):  
Shojiro Katoh ◽  
Hiroshi Yoshioka ◽  
Shoji Suzuki ◽  
Hiroyuki Nakajima ◽  
Masaru Iwasaki ◽  
...  

Chondrocytes are used in cell-based therapies such as autologous chondrocyte implantation (ACI) and matrix-associated cartilage implantation (MACI). To transport the cartilage tissue to the laboratory for in vitro culturing, phosphate-buffered saline (PBS), Euro-Collins solution (ECS) and Dulbecco Modified Eagle Medium (DMEM) are commonly employed at 4-8 deg C. In this study, eight samples of human cartilage biopsy tissues from elderly patients with severe osteoarthritis undergoing arthroscopy, which would otherwise have been discarded, were used. The cartilage tissue samples were compared to assess the cell yield between two transportation groups: i) a thermo-reversible gelation polymer (TGP) based method without cool preservation (~25 deg C) and ii) ECS transport at 4 deg C. These samples were subjected to in vitro culture in a two-dimensional (2D) monolayer for two weeks and subsequently in a three-dimensional (3D) TGP scaffold for six weeks. The cell count obtained from the tissues transported in TGP was higher (0.2 million cells) than those transported in ECS (0.08 million cells) both after initial processing and after in vitro culturing for 2 weeks in 2D (18 million cells compared with 10 million cells). In addition, mRNA quantification demonstrated significantly higher expression of Col2a1 and SOX-9 in 3D-TGP cultured cells and lower expression of COL1a1 in RT-PCR, characteristic of the hyaline cartilage phenotype, than in 2D culture. This study confirms that the TGP cocktail is suitable for both the transport of human cartilage tissue and for in vitro culturing to yield better-quality cells for use in regenerative therapies.


2018 ◽  
Vol 132 (9) ◽  
pp. 959-983 ◽  
Author(s):  
Karlhans Fru Che ◽  
Ellen Tufvesson ◽  
Sara Tengvall ◽  
Elisa Lappi-Blanco ◽  
Riitta Kaarteenaho ◽  
...  

Long-term tobacco smokers with chronic obstructive pulmonary disease (COPD) or chronic bronchitis display an excessive accumulation of neutrophils in the airways; an inflammation that responds poorly to established therapy. Thus, there is a need to identify new molecular targets for the development of effective therapy. Here, we hypothesized that the neutrophil-mobilizing cytokine interleukin (IL)-26 (IL-26) is involved in airway inflammation amongst long-term tobacco smokers with or without COPD, chronic bronchitis or colonization by pathogenic bacteria. By analyzing bronchoalveolar lavage (BAL), bronchail wash (BW) and induced sputum (IS) samples, we found increased extracellular IL-26 protein in the airways of long-term smokers in vivo without further increase amongst those with clinically stable COPD. In human alveolar macrophages (AM) in vitro, the exposure to water-soluble tobacco smoke components (WTC) enhanced IL-26 gene and protein. In this cell model, the same exposure increased gene expression of the IL-26 receptor complex (IL10R2 and IL20R1) and nuclear factor κ B (NF-κB); a proven regulator of IL-26 production. In the same cell model, recombinant human IL-26 in vitro caused a concentration-dependent increase in the gene expression of NF-κB and several pro-inflammatory cytokines. In the long-term smokers, we also observed that extracellular IL-26 protein in BAL samples correlates with measures of lung function, tobacco load, and several markers of neutrophil accumulation. Extracellular IL-26 was further increased in long-term smokers with exacerbations of COPD (IS samples), with chronic bronchitis (BAL samples ) or with colonization by pathogenic bacteria (IS and BW samples). Thus, IL-26 in the airways emerges as a promising target for improving the understanding of the pathogenic mechanisms behind several pulmonary morbidities in long-term tobacco smokers.


2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Ian R Lanza ◽  
Daniel K Short ◽  
Kevin R Short ◽  
Yan W Asmann ◽  
Sreekumar Raghavakaimal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document