The Effect of the Prethanol Extract of Trifolium pratense Leaves on Interleukin-1β-Induced Cartilage Matrix Degradation in Primary Rat Chondrocytes

2018 ◽  
Vol 206 (1-2) ◽  
pp. 95-105 ◽  
Author(s):  
Seul Ah Lee ◽  
Sung-Min Moon ◽  
Seul Hee Han ◽  
Jae-Sung Kim ◽  
Do Kyung Kim ◽  
...  

Background: Osteoarthritis (OA) is a degenerative joint disease, characterized by cartilage degradation and inflammation. The proinflammatory cytokine, interleukin (IL)-1β, plays a crucial role in the pathogenesis of OA by inducing the release of other catabolic factors that contribute to cartilage degradation. Trifolium pratense L. (red clover) has been used as a medicinal plant in many countries and as a source of nutraceuticals to alleviate the symptoms of menopause. Ob­jectives: In this study, we aimed to evaluate the anticatabolic effect of 40% prethanol extract of T. pratense (40% PeTP) on IL-1β-stimulated chondrocytes. Methods: Primary rat chondrocytes were pretreated with 40% PeTP for 1 h before stimulation with IL-1β (20 ng/mL). The production of nitrite, prostaglandin E2 (PGE2), and aggrecan was measured by using Griess reagent and ELISA. Protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, A disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-4, mitogen-activated protein kinase (MAPK), and the nuclear factor (NF)-κB p65 subunit was measured by using Western blotting. Results: PeTP (40%) significantly inhibited the IL-1β-induced expression of nitrite, iNOS, PGE2, COX-2, MMP-1, MMP-3, MMP-13, and ADAMTS-4 in isolated primary rat chondrocytes. Furthermore, 40% PeTP decreased the IL-1β-induced degradation of aggrecan, the phosphorylation of MAPKs, and the nuclear translocation of the NF-κB p65 subunit. Conclusion: These results suggested that 40% PeTP has a chondroprotective effect on inflammation and may be a potential preventative agent for OA progression.

2019 ◽  
Vol 20 (10) ◽  
pp. 2490 ◽  
Author(s):  
Wen-Chung Huang ◽  
Chun-Hsun Huang ◽  
Sindy Hu ◽  
Hui-Ling Peng ◽  
Shu-Ju Wu

Atopic dermatitis (AD) is a recurrent allergic skin disease caused by genetic and environmental factors. Patients with AD may experience immune imbalance, increased levels of mast cells, immunoglobulin (Ig) E and pro-inflammatory factors (Cyclooxygenase, COX-2 and inducible NO synthase, iNOS). While spilanthol (SP) has anti-inflammatory and analgesic activities, its effect on AD remains to be explored. To develop a new means of SP, inflammation-related symptoms of AD were alleviated, and 2,4-dinitrochlorobenzene (DNCB) was used to induce AD-like skin lesions in BALB/c mice. Histopathological analysis was used to examine mast cells and eosinophils infiltration in AD-like skin lesions. The levels of IgE, IgG1 and IgG2a were measured by enzyme-linked immunosorbent assay (ELISA) kits. Western blot was used for analysis of the mitogen-activated protein kinase (MAPK) pathways and COX-2 and iNOS protein expression. Topical SP treatment reduced serum IgE and IgG2a levels and suppressed COX-2 and iNOS expression via blocked mitogen-activated protein kinase (MAPK) pathways in DNCB-induced AD-like lesions. Histopathological examination revealed that SP reduced epidermal thickness and collagen accumulation and inhibited mast cells and eosinophils infiltration into the AD-like lesions skin. These results indicate that SP may protect against AD skin lesions through inhibited MAPK signaling pathways and may diminish the infiltration of inflammatory cells to block allergic inflammation.


2017 ◽  
Vol 43 (2) ◽  
pp. 540-552 ◽  
Author(s):  
Hany H. Arab ◽  
Samir A. Salama ◽  
Tamer M. Abdelghany ◽  
Hany A. Omar ◽  
El-Shaimaa A. Arafa ◽  
...  

Background/Aims: Camel milk (CM) has shown beneficial anti-inflammatory actions in several experimental and clinical settings. So far, its effect on rheumatoid arthritis (RA) has not been previously explored. Thus, the current work aimed to evaluate the effects of CM in Adjuvant-induced arthritis and air pouch edema models in rats, which mimic human RA. Methods: CM was administered at 10 ml/kg orally for 3 weeks starting on the day of Freund’s adjuvant paw inoculation. The levels of TNF-α and IL-10 were measured by ELISA while the protein expression of NF-κBp65, COX-2 and iNOS was detected by immunohistochemistry. The expression of MAPK target proteins was assessed by Western blotting. Results: CM attenuated paw edema, arthritic index and gait score along with dorsal pouch inflammatory cell migration. CM lowered the TNF-α and augmented the anti-inflammatory IL-10 levels in sera and exudates of arthritic rats. It also attenuated the expression of activated NF-κBp65, COX-2 and iNOS in the lining of the dorsal pouch. Notably, CM inhibited the MAPK pathway signal transduction via lowering the phosphorylation of p38 MAPK, ERK1/2 and JNK1/2 in rat hind paws. Additionally, CM administration lowered the lipid peroxide and nitric oxide levels and boosted glutathione and total anti-oxidant capacity in sera and exudates of animals. Conclusion: The observed CM downregulation of the arthritic process may support the interest of CM consumption as an adjunct approach for the management of RA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiyuan Yan ◽  
Yingchi Zhang ◽  
Gaohong Sheng ◽  
Bowei Ni ◽  
Yifan Xiao ◽  
...  

Osteoarthritis (OA) is a prevalent degenerative joint disease. Its development is highly associated with inflammatory response and apoptosis in chondrocytes. Selonsertib (Ser), the inhibitor of Apoptosis Signal-regulated kinase-1 (ASK1), has exhibited multiple therapeutic effects in several diseases. However, the exact role of Ser in OA remains unclear. Herein, we investigated the anti-arthritic effects as well as the potential mechanism of Ser on rat OA. Our results showed that Ser could markedly prevent the IL-1β-induced inflammatory reaction, cartilage degradation and cell apoptosis in rat chondrocytes. Meanwhile, the ASK1/P38/JNK and NFκB pathways were involved in the protective roles of Ser. Furthermore, intra-articular injection of Ser could significantly alleviate the surgery induced cartilage damage in rat OA model. In conclusion, our work provided insights into the therapeutic potential of Ser in OA, indicating that Ser might serve as a new avenue in OA treatment.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2611
Author(s):  
Jong Hee Im ◽  
Seungmin Son ◽  
Jae-Heung Ko ◽  
Kyung-Hwan Kim ◽  
Chung Sun An ◽  
...  

The plant mitogen-activated protein kinase (MPK) cascade, a highly conserved signal transduction system in eukaryotes, plays a crucial role in the plant’s response to environmental stimuli and phytohormones. It is well-known that nuclear translocation of MPKs is necessary for their activities in mammalian cells. However, the mechanism underlying nuclear translocation of plant MPKs is not well elucidated. In the previous study, it has been shown that soybean MPK6 (GmMPK6) is activated by phosphatidic acid (PA) and hydrogen peroxide (H2O2), which are two signaling molecules generated during salt stress. Using the two signaling molecules, we investigated how salt stress triggers its translocation to the nucleus. Our results show that the translocation of GmMPK6 to the nucleus is mediated by H2O2, but not by PA. Furthermore, the translocation was interrupted by diphenylene iodonium (DPI) (an inhibitor of RBOH), confirming that H2O2 is the signaling molecule for the nuclear translocation of GmMPK6 during salt stress.


2004 ◽  
Vol 24 (15) ◽  
pp. 6751-6762 ◽  
Author(s):  
Keita Kirito ◽  
Norma Fox ◽  
Kenneth Kaushansky

ABSTRACT Members of the homeobox family of transcription factors are major regulators of hematopoiesis. Overexpression of either HOXB4 or HOXA9 in primitive marrow cells enhances the expansion of hematopoietic stem cells (HSCs). However, little is known of how expression or function of these proteins is regulated during hematopoiesis under physiological conditions. In our previous studies we demonstrated that thrombopoietin (TPO) enhances levels of HOXB4 mRNA in primitive hematopoietic cells (K. Kirito, N. Fox, and K. Kaushansky, Blood 102:3172-3178, 2003). To extend our studies, we investigated the effects of TPO on HOXA9 in this same cell population. Although overall levels of the transcription factor were not affected, we found that TPO induced the nuclear import of HOXA9 both in UT-7/TPO cells and in primitive Sca-1+/c-kit+/Gr-1− hematopoietic cells in a mitogen-activated protein kinase-dependent fashion. TPO also controlled MEIS1 expression at mRNA levels, at least in part due to phosphatidylinositol 3-kinase activation. Collectively, TPO modulates the function of HOXA9 by leading to its nuclear translocation, likely mediated by effects on its partner protein MEIS1, and potentially due to two newly identified nuclear localization signals. Our data suggest that TPO controls HSC development through the regulation of multiple members of the Hox family of transcription factors through multiple mechanisms.


Author(s):  
Lindsey N Kent ◽  
You E Li ◽  
Monali Wakle-Prabagaran ◽  
Mashal Z Naqvi ◽  
Sophia G Weil ◽  
...  

Abstract Nuclear factor kappa B (NF-κB) transcriptionally regulates several genes involved in initiating uterine contractions. A key factor controlling NF-κB activity is its translocation to the nucleus. In myometrial smooth muscle cells (MSMCs), this translocation can be stimulated by the inflammatory molecule lipopolysaccharide (LPS) or by blocking the potassium calcium-activated channel subfamily M alpha 1 (KCNMA1 or BKCa) with paxilline (PAX). Here, we sought to determine the mechanism by which blocking BKCa causes NF-κB-p65 translocation to the nucleus in MSMCs. We show that LPS- and PAX-induced NF-κB-p65 translocation are similar in that neither depend on several mitogen-activated protein kinase pathways, but both require increased intracellular calcium (Ca2+). However, the nuclear transport inhibitor wheat germ agglutinin prevented NF-κB-p65 nuclear translocation in response to LPS but not in response to PAX. Blocking BKCa located on the plasma membrane resulted in a transient NF-κB-p65 nuclear translocation that was not sufficient to induce expression of its transcriptional target, suggesting a role for intracellular BKCa. We report that BKCa also localizes to the nucleus and that blocking nuclear BKCa results in an increase in nuclear Ca2+ in MSMCs. Together, these data suggest that BKCa localized on the nuclear membrane plays a key role in regulating nuclear Ca2+ and NF-κB-p65 nuclear translocation in MSMCs.


Cartilage ◽  
2019 ◽  
pp. 194760351985575 ◽  
Author(s):  
Kang Chen ◽  
Hao Zhu ◽  
Min-Qian Zheng ◽  
Qi-Rong Dong

Background As a degenerative joint disease, osteoarthritis (OA) is characterized by articular cartilage degradation. Long noncoding RNAs (lncRNAs) act critical roles in the regulation of OA development, including affecting the proliferation, apoptosis, extracellular matrix (ECM) degradation, and inflammatory response of chondrocytes. The current study’s aim was to investigate the regulatory function and the underlying molecular mechanism of lncRNA MEG3 in ECM degradation of chondrocytes in OA. Methods In the current study, chondrocytes were induced by interleukin-1β (IL-1β) to simulate OA condition, and further assessed cell viability, lncRNA MEG3 and miR-93 expression levels. Overexpression or knockdown of lncRNA MEG3 in chondrocytes treated with IL-1β were performed to investigate the function of MEG3 in regulating cell proliferation, apoptosis and ECM degradation using EdU assay, flow cytometry, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and Western blot. The interaction between MEG3 and miR-93 was assessed using qRT-PCR. Furthermore, overexpression of miR-93 was performed as recovery experiment to explore the functional mechanism of MEG3. Results MEG3 was significantly downregulated in chondrocytes treated with IL-1β, whereas miR-93 was upregulated concomitantly. Overexpression of MEG3 induced the proliferation, suppressed the apoptosis, and relieved the degradation of ECM in IL-1β-induced chondrocytes. By contrast, knockdown of MEG3 suppressed the proliferation, promoted the apoptosis, and aggravated ECM degradation in IL-1β induced chondrocytes. In addition, MEG3 was found to relieve the inhibitive expression of TGFBR2 as a competitive endogenous RNA (ceRNA) of miR-93, and then activated transforming growth factor-β (TGF-β) signaling pathway, regulated chondrocytes ECM degradation in IL-1β induced chondrocytes subsequently. Conclusion LncRNA MEG3 targeted miR-93/TGFBR2 axis, regulated the proliferation, apoptosis and ECM degradation of chondrocytes in OA.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 927 ◽  
Author(s):  
Szu-Yu Chien ◽  
Chun-Hao Tsai ◽  
Shan-Chi Liu ◽  
Chien-Chung Huang ◽  
Tzu-Hung Lin ◽  
...  

Osteoarthritis (OA) is a chronic inflammatory and progressive joint disease that results in cartilage degradation and subchondral bone remodeling. The proinflammatory cytokine interleukin 1 beta (IL-1β) is abundantly expressed in OA and plays a crucial role in cartilage remodeling, although its role in the activity of chondrocytes in cartilage and subchondral remodeling remains unclear. In this study, stimulating chondrogenic ATDC5 cells with IL-1β increased the levels of bone morphogenetic protein 2 (BMP-2), promoted articular cartilage degradation, and enhanced structural remodeling. Immunohistochemistry staining and microcomputed tomography imaging of the subchondral trabecular bone region in the experimental OA rat model revealed that the OA disease promotes levels of IL-1β, BMP-2, and matrix metalloproteinase 13 (MMP-13) expression in the articular cartilage and enhances subchondral bone remodeling. The intra-articular injection of Noggin protein (a BMP-2 inhibitor) attenuated subchondral bone remodeling and disease progression in OA rats. We also found that IL-1β increased BMP-2 expression by activating the mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase (ERK), and specificity protein 1 (Sp1) signaling pathways. We conclude that IL-1β promotes BMP-2 expression in chondrocytes via the MEK/ERK/Sp1 signaling pathways. The administration of Noggin protein reduces the expression of IL-1β and BMP-2, which prevents cartilage degeneration and OA development.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Revathee Rajajendram ◽  
Chau Ling Tham ◽  
Mohamad Nadeem Akhtar ◽  
Mohd Roslan Sulaiman ◽  
Daud Ahmad Israf

Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The interaction between airway epithelium and inflammatory mediators plays a key role in the pathogenesis of asthma.In vitrostudies evaluated the inhibitory effects of 3-(2,5-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMPF-1), a synthetic chalcone analogue, upon inflammation in the A549 lung epithelial cell line. DMPF-1 selectively inhibited TNF-α-stimulated CC chemokine secretion (RANTES, eotaxin-1, and MCP-1) without any effect upon CXC chemokine (GRO-αand IL-8) secretion. Western blot analysis further demonstrated that the inhibitory activity resulted from disruption of p65NF-κB nuclear translocation without any effects on the mitogen-activated protein kinase (MAPK) pathway. Treatment of ovalbumin-sensitized and ovalbumin-challenged BALB/c mice with DMPF-1 (0.2–100 mg/kg) demonstrated significant reduction in the secretion and gene expression of CC chemokines (RANTES, eotaxin-1, and MCP-1) and Th2 cytokines (IL-4, IL-5, and IL-13). Furthermore, DMPF-1 treatment inhibited eosinophilia, goblet cell hyperplasia, peripheral blood total IgE, and airway hyperresponsiveness in ovalbumin-sensitized and ovalbumin-challenged mice. In conclusion, these findings demonstrate the potential of DMPF-1, a nonsteroidal compound, as an antiasthmatic agent for further pharmacological evaluation.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 637 ◽  
Author(s):  
Paula Carpintero-Fernandez ◽  
Marta Varela-Eirin ◽  
Alessandra Lacetera ◽  
Raquel Gago-Fuentes ◽  
Eduardo Fonseca ◽  
...  

Osteoarthritis (OA) is the most common degenerative joint disease characterized by articular cartilage degradation and joint degeneration. The articular cartilage is mainly formed by chondrocytes and a collagen-proteoglycan extracellular matrix that contains high levels of glycosylated proteins. It was reported that the shift from glycoproteins containing α-2,6-linked sialic acids to those that contain α-2,3 was associated with the onset of common types of arthritis. However, the pathophysiology of α-2,3-sialylation in cartilage has not been yet elucidated. We show that cartilage from osteoarthritic patients expresses high levels of the α-2,3-sialylated transmembrane mucin receptor, known as podoplanin (PDPN). Additionally, the Maackia amurensis seed lectin (MASL), that can be utilized to target PDPN, attenuates the inflammatory response mediated by NF-kB activation in primary chondrocytes and protects human cartilage breakdown ex vivo and in an animal model of arthritis. These findings reveal that specific lectins targeting α-2,3-sialylated receptors on chondrocytes might effectively inhibit cartilage breakdown. We also present a computational 3D molecular model for this interaction. These findings provide mechanistic information on how a specific lectin could be used as a novel therapy to treat degenerative joint diseases such as osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document