Chronic Addiction to Tramadol and Withdrawal Effect on the Spermatogenesis and Testicular Tissues in Adult Male Albino Rats

Pharmacology ◽  
2019 ◽  
Vol 103 (3-4) ◽  
pp. 202-211 ◽  
Author(s):  
Marwan Abdel-Latif Ibrahim ◽  
Alaa-Eldin Salah-Eldin

Aim: The present study aimed to elucidate the effects of tramadol on the testicular functions of adult male rats due to the chronic usage of tramadol and the effect of its withdrawal. Method: Adult male albino rats were classified into the following 3 groups: (I) a control administered with normal saline and (II) tramadol-treated rats (40 mg/kg b.w. orally) for 21 successive days; and (III) like the rats in the second group but kept for 4 weeks after the last tramadol dose to study the effect of tramadol withdrawal. At the end of the experimental period, blood was collected and specimens from testis were taken for histopathological, biochemical, and molecular studies. A reverse transcription-polymerized chain reaction after RNA extraction from specimens was detected for the anti-apoptotic and pro-apoptotic genes in testicular tissues. Also, malondialdehyde (MDA) was measured in tissues homogenate and antioxidant enzymes activities were evaluated. Results: The results of this study demonstrated histological changes in testicular tissues in groups II and III compared to the control group, accompanied with increased apoptotic index and proved by increased B-cell lymphoma-2 (Bcl-2) associated-X-protein and caspase-3 expression, whereas anti-apoptotic Bcl-2 markedly decreased. Moreover, in tramadol-abused and -withdrawal groups, the MDA level increased, while the antioxidant enzymes activity decreased and revealed oxidative stress, indicating that tramadol is harmful at the cellular level and can induce apoptotic changes in testicular tissues. The withdrawal effect showed signs of improvement, but it did not return to normal levels. Conclusions: It could be concluded that the administration of tramadol causes abnormalities on testicular tissues associated with oxidative stress, which confirmed the risk of increased oxidative stress on testicular tissues due to tramadol abuse.

2019 ◽  
Vol 8 (5) ◽  
pp. 741-753 ◽  
Author(s):  
Israa F. Mosa ◽  
Mokhtar I. Yousef ◽  
Maher Kamel ◽  
Osama F. Mosa ◽  
Yasser Helmy

Abstract Hydroxyapatite nanoparticles (HAP-NPs) are an inorganic component of natural bone and are mainly used in the tissue engineering field due to their bioactivity, osteoconductivity, biocompatibility, non-inflammatory, and non-toxicity properties. However, the current toxicity data for HAP-NPs regarding human health are limited, and only a few results from basic studies have been published. Therefore, the present study was designed to investigate the beneficial role of chitosan nanoparticles (CsNPs) and curcumin nanoparticles (CurNPs) in alleviating nephrotoxicity induced by HAP-NPs in male rats. The results showed that HAP-NPs caused a reduction in antioxidant enzymes and induced lipid peroxidation, nitric oxide production and DNA oxidation. Moreover, HAP-NP administration was associated with intense histologic changes in kidney architecture and immunoreactivity to proliferating cell nuclear antigen (PCNA). However, the presence of CsNPs and/or CurNPs along with HAP-NPs reduced the levels of oxidative stress through improving the activities of antioxidant enzymes. Also, the rats administered the nanoparticles showed a moderate improvement in glomerular damage which matched that of the control group and showed mild positive reactions to PCNA–ir in glomeruli and renal tubules in the cortical and medullary portions. These novel insights confirm that the presence of chitosan and curcumin in nanoforms has powerful biological effects with enhanced bioactivity and bioavailability phenomena compared to their microphase counterparts. Also, they were able to ameliorate the nephrotoxicity induced by HAP-NPs.


2021 ◽  
Vol 25 (2) ◽  
pp. 192-195
Author(s):  
S. I. Semenenko

Annotation. An important measure of intensive care in patients with traumatic brain injury (TBI) is the use of pharmacotherapeutic agents with antioxidant properties. The aim of this study was to evaluate the effect of ademol compared with amantadine sulfate and 0.9% NaCl solution on the course of oxidative stress in the brain of TBI rats. The experiments were performed on 28 white male rats weighing 160-190 g. The experimental TBI model of severe severity was caused by the action of a carbon dioxide flow under pressure created using a gas balloon pneumatic gun. The therapeutic effect of ademol on model TBI was evaluated with a 2 mg/kg dose. The pseudoperated animals and control group received a 0.9% solution of NaCl and amantadine sulfate at a dose of 2 ml/kg and 5 mg/kg i/v. Data were processed using StatPlus 2009. We used the parametric criterion of t-Student, non-parametric criterion of W. White, paired criterion Ť. Wilcoxon, Fisher's angular transformation at p <0,05. In the course of the experiment, it was found that treatment of rats with TBI ademol leads to a decrease in the activity of lipid peroxidation and oxidative degradation of proteins (p<0.05) and promotes the normalization of the activity of antioxidant enzymes in cells of traumatically damaged brain (p<0.05). The use of ademol compared to amantadine sulfate and 0.9% NaCl solution was accompanied by a more significant decrease in the activity of lipid peroxidation and oxidative degradation of proteins and an improvement in the level of antioxidant enzymes in damaged brain of animals with TBI (p<0.05).


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Arwa A. El-Sheikh ◽  
Shimaa Hamed Ameen ◽  
Samaa Salah AbdEl-Fatah

Objective. The aim of our study is to compare the role of the new natural alternative (Quercetin) with the current iron-chelation therapy (Deferoxamine (DFO)) in the effect of iron overload on small intestinal tissues and to investigate the possible underlying molecular mechanisms of such toxicity. Methods. Forty-two adult male albino rats were divided into six groups: control groups, DFO, Quercetin, iron overload, iron overload+DFO, and iron overload+Quercetin groups. Animals received daily intraperitoneal injection of Deferoxamine (125 mg /kg), Quercetin (10 mg/kg), and ferric dextran (200 mg/kg) for 2 weeks. Results. Iron overloaded group showed significant increase in serum iron, total iron binding capacity (TIBC), transferrin saturation percentage (TS %) hepcidin (HEPC), serum ferritin, nontransferrin bound iron (NTBI), and small intestinal tissues iron levels. Iron overload significantly increased the serum oxidative stress indicator (MDA) and reduced serum total antioxidant capacity (TAC). On the other hand, iron overload increased IL6 and reduced IL10 in small intestinal tissues reflecting inflammatory condition and increased caspase 3 reactivity indicating apoptosis and increased iNOs expressing cell indicting oxidative stress especially in ileum. In addition, it induced small intestinal tissues pathological alterations. The treatment with Quercetin showed nonsignificant differences as compared to treatment with DFO that chelated the serum and tissue iron and improved the oxidative stress and reduced tissue IL6 and increased IL10 and decreased caspase 3 and iNOs expressing cells in small intestinal tissues. Moreover, it ameliorated the iron overload induced pathological alterations. Conclusion. Our study showed the potential role of Quercetin as iron chelator like DFO in case of iron overload induced small intestinal toxicity in adult rats because of its serum and tissue iron chelation, improvement of serum, and small intestinal oxidative stress, ameliorating iron induced intestinal inflammation, apoptosis, and histopathological alterations.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 170 ◽  
Author(s):  
Pei You Wu ◽  
Eleonora Scarlata ◽  
Cristian O’Flaherty

Oxidative stress is a common culprit of several conditions associated with male fertility. High levels of reactive oxygen species (ROS) promote impairment of sperm quality mainly by decreasing motility and increasing the levels of DNA oxidation. Oxidative stress is a common feature of environmental pollutants, chemotherapy and other chemicals, smoke, toxins, radiation, and diseases that can have negative effects on fertility. Peroxiredoxins (PRDXs) are antioxidant enzymes associated with the protection of mammalian spermatozoa against oxidative stress and the regulation of sperm viability and capacitation. In the present study, we aimed to determine the long-term effects of oxidative stress in the testis, epididymis and spermatozoa using the rat model. Adult male rats were treated with tert-butyl hydroperoxide (t-BHP) or saline (control group), and reproductive organs and spermatozoa were collected at 3, 6, and 9 weeks after the end of treatment. We determined sperm DNA oxidation and motility, and levels of lipid peroxidation and protein expression of antioxidant enzymes in epididymis and testis. We observed that cauda epididymal spermatozoa displayed low motility and high DNA oxidation levels at all times. Lipid peroxidation was higher in caput and cauda epididymis of treated rats at 3 and 6 weeks but was similar to control levels at 9 weeks. PRDX6 was upregulated in the epididymis due to t-BHP; PRDX1 and catalase, although not significant, followed similar trend of increase. Testis of treated rats did not show signs of oxidative stress nor upregulation of antioxidant enzymes. We concluded that t-BHP-dependent oxidative stress promoted long-term changes in the epididymis and maturing spermatozoa that result in the impairment of sperm quality.


Author(s):  
Rizgar Khalid Nabi ◽  
Mahdi Ali Abdullah

Background: Diabetes is directly involved in oxidative stress production. Therefore, this work was conducted to investigate the histopathological changes which occur in parenchymatous and to evaluate the antioxidant effect of quercetin in alloxan induced diabetes in male albino rats.Methods: Thirty-six male albino rats were divided into six groups of 6 rats in each group and treated as follows: a control group, quercetin group, diabetic control group, diabetic with quercetin group, diabetic with insulin group, diabetic with quercetin plus insulin group, alloxan was administered as a single dose (140 mg/kg body weight) to induce diabetes.Results: Result showed histopathological changes which included degenerative to necrotic changes of the liver, kidney and pancreas and this are due to the effect of oxidative stress that occurred from diabetes by alloxan. Conversely, quercetin significantly modulated improved histopathological changes founded on this study with or without of insulin, furthermore, results showed that damaged tissues where improved when groups of rats treated with quercetin and insulin together.Conclusions: It has been concluded that the quercetin could be promising antioxidants for reducing the risk of oxidation induced by diabetes that lead to nephrotoxicity, hepatotoxicity and pancreatic damage.


Author(s):  
ASMAA M. ZAAZAA ◽  
NADIA NOBLE-DAOUD ANISS

Objective: Excessive oxidative stress is implicated in spleen injury. Platelet-rich plasma (PRP) and quercetin (QUR) have been shown to protect cells against oxidative stress. This study was designed to investigate their effect on dimethyl nitrosamine (DMN) induced spleen injury in male rats. Methods: Forty male Wistar rats were divided into four groups; Group (1): Negative control group (Con), Group (2): DMN group, DMN was given intraperitonealy at a dose of 4 mg/kg b. wt/day for four weeks for sub-chronic injury of spleen tissue, Group (3): DMN+PRP, rats were injected intraperitonealy with DMN at a dose of 4 mg/kg b. wt/day for four weeks then treated i. v. by single dose 50 μL of PRP, then left for a period of four weeks without any treatments, Group(4): DMN+QUR, rats received intraperitonealy DMN at a dose of 4 mg/kg b. wt/day for four weeks, then treated with quercetin orally at a dose of 50 mg/kg b. wt. in aqueous suspension daily using an intragastric tube for four weeks. Results: DMN inoculation resulted in significant elevations of oxidative stress, as evidenced by the increased malondialdehyde, hydrogen peroxide and xanthine oxidase levels associated with a significant decrease in Superoxide dismutase and catalase activities in the spleen tissue as compared to the normal control group. Moreover, DMN caused an up-regulation in the values of the splenic C-reactive protein (CRP), interleuckin-6 (IL-6), nuclear factor kappa B (NF-κB), leukotriene-C4 (LT-C4), P53 and Fas levels with a significant decline in anti-apoptotic protein B-cell lymphoma 2 level as compared to the normal control group. PRP and QUR significantly attenuated the DMN-evoked spleen oxidative stress and modulated the activities of antioxidant enzymes as compared to DMN group. In addition, treatment of DMN group with PRP or QUR resulted in an improvement in CRP, IL-6, NF-κB, LT-C4, P53 and Fas levels as compared to DMN group. Caspase-3 expression was positive in DMN group while no difference was present in control, PRP and Quercetin groups. However, the VEGF immunopositive reaction was found in DMN, PRP and Quercetin groups compared to control group. Histopathological results showed degeneration, haemorrhage, inflammatory cells and necrotoic areas in splenic tissue from DMN group compared to the treated groups where signs of recovery were observed in the whole splenic tissue. Conclusion: These data suggest that PRP and QUR protect rat spleen from DMN-induced oxidative stress, probably via their antioxidant activity, anti-inflammatory and anti-apoptotic effects. So, PRP and QUR are promising pharmacological agents for preventing the potential spleen injury of DMN following occupational or environmental exposures.


Author(s):  
Shahin Kashefimehr ◽  
Mohammadreza Nasirzadeh

Introdution: Diabetes is the most common endocrine disorder characterized by hyperglycemia. Increasing the oxidative stress and changing the amount of antioxidants play important roles in pathogenesis of diabetes. Nowadays to control diabetes and its complications, the use of herbal drugs is considered widely. In this study, we investigated the effect of oleuropein on antioxidant enzymes activity of heart tissue in Streptozotocin induced diabetic male rats. Methods: In this study, 30 adult male Wistar rats with a weight range of 190±30 gr were randomly divided into 3 groups(n=10 in each group): 1) control group or intact rats, 2) diabetic rats, and 3) treatment group, which received 60 mg/kg oleuropein for 30 days by gastric gavage. Diabetes was induced by injection of streptozotocin (60 mg/kg) intraperitoneally. At the end of the treatment, serum concentrations of blood glucose and heart tissue antioxidant enzymes activity were determined. The obtained data were analyzed using  SPSS Inc., Chicago, IL; Version 18, statistical method of one way variance analysis and post hoc-Duncan test . Results: The results showed that serum concentration of glucose decrease significantly in treatment group compared with the diabetic group (p=0.000). Also, TAC, SOD and GPX activity increased significantly in the treatment group compared with the diabetic group (p=0.000). Conclusion: This study showed that oleuropein can prevent blood glucose increasing and reinforce antioxidant system of cardiac tissue in diabetic rats.


2017 ◽  
Vol 5 (2) ◽  
pp. 72 ◽  
Author(s):  
Mossad El-Sayed ◽  
Mohamed Kandiel ◽  
Dalia Ebied

This study aimed to evaluate the numerous azithromycin (as a member of macrolides) effects on the male reproductive organs, spermio-gram, testicular oxidative stress markers of adults’ male albino rats. Azithromycin was administered orally once daily to male rats (200-250 b.wt.) at a dose of 45 mg (therapeutic) or 90 mg/kg b.wt. (double-therapeutic) for three or six days and scarified at the first, thirty and sixty days after the last dose of administration. A significant decrease as the index weight of the reproductive organs as well as sperm motility, livability and cell concentration, but sperm abnormalities increased at varying times post-treatment with azithromycin administration. Testosterone hormone level did not vary significantly after azithromycin dosing for three days along the experimental period. However, it differed at the first day after the end of azithromycin dosing for six days. The intra-testicular oxidative stress alteration mostly occurred at the thirty-day post-treatment in the three- and six-days protocols. In the three-days protocol, there was a significant decrease in malondialdehyde level and superoxide dismutase enzyme activity in a double-therapeutic group. In the six-days regimen, there was an increased activity of catalase enzyme, accompanied with a significant decrease in malondialdehyde levels as well as glutathione peroxidase enzymes. Double therapeutic dose for six days’ treatment was associated with vascular congestion and perivascular inflammatory cells and ho-mogenous eosinophilic material infiltration into the stroma of testes. The lumen of seminiferous tubules and epididymis showed azoo-spermia. From these results, it could be concluded that azithromycin administration has hazard effects on male adult’s rats’ fertility governed with the spermiogram, oxidative stress and the histopathological alternations during the post-treatment period.


2021 ◽  
Vol 25 (1) ◽  
pp. 154-172
Author(s):  
K. K. Khudiar ◽  
B. N. Abdullah ◽  
K. A. Al-Mzaien

In this study, the potential protective effect of aqueous extract of parsley (Petroselinum sativum) seeds against hydrogen peroxide (H2O2) – induced oxidative stress in male rats was assessed. Three groups of male albino rats were randomly divided (n=7) and were handled for twenty-eight days as follows: rats in group I served as control; animals in group || were provided with drinking water containing 0.5% H2O2 and those in group III received orally 8 mg/100 gm B.W. of aqueous extract of parsley seeds plus 0.5% H2O2 in drinking water. After four weeks experimental period, a significant increase in lipid peroxidation products (MDA), and decrease in glutathione (GSH) concentrations were observed in plasma, kidney, liver and heart tissues of H2O2 treated animals as compared with the control group. These biomarkers (GSH and MDA) are interrelated and indicate the occurrence of oxidative stress. Plasma total cholesterol (TC) concentration was significantly increased in H2O2 treated rats. By administration of aqueous extract of parsley along with H2O2, plasma and tissue GSH levels were significantly increased while the elevation in MDA level was diminished in plasma and different tissues examined. A decrease in plasma cholesterol concentration was recorded in H2O2 and parsley treated group as compared with the control one and H2O2 treated groups. These results indicate that aqueous extract of parsley have hypocholesterolemic and antioxidant effect.


2020 ◽  
Vol 36 (1) ◽  
Author(s):  
Mervat EL-Sayed Taha ◽  
Amaal Mohamed Kamal ◽  
Dalia Ramzy Ibrahim

Paracetamol (PCM) overdose can cause hepatotoxicity with oxidative stress; the present study was carried out to establish the possible protective effect of olive leaves extract (OLE) on toxicity induced by paracetamol in adult male rats. Twenty four adult male rats were divided into four equal groups; control, olive leaves extract group, paracetamol group and olive leaves extract plus paracetamol group. Some biochemical parameters and liver histopathology were evaluated. PCM treatment significantly increased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin, gamma-glutamyltransferase (GGT), lactate dehydrogenase (LDH), urea, creatinine and alpha-fetoprotein. Paracetamol was found to significantly increase malonaldehyde (MDA) and decrease glutathione reductase (GR) activity in tissue and significantly decrease total antioxidant capacity (TAC) and superoxide dismutase (SOD) in serum. Administration of OLE caused a significant decrease serum AST, ALT enzyme, total bilirubin, GGT, LDH, creatinine, urea, alpha-fetoprotein. Also, amelioration of oxidant – antioxidant status with olive leaves extract was observed in addition to a significant decrease in MDA and a significant increase in TAC in liver tissue with a significant increase in glutathione reductase (GR) and SOD in serum compared to paracetamol treated group The chemical pathological changes were in step with histopathological observation suggesting marked hepatoprotective result of olive leaves extract. It could be concluded that olive leaves extract (OLE) treatment may be effective in decreasing hepatic injury and oxidative stress induced by paracetamol overdose in male albino rats.


Sign in / Sign up

Export Citation Format

Share Document