Pirfenidone Attenuates Renal Tubulointerstitial Fibrosis through Inhibiting miR-21

Nephron ◽  
2021 ◽  
pp. 1-11
Author(s):  
Liangliang Bi ◽  
Yanjie Huang ◽  
Jing Li ◽  
Xiaoqing Yang ◽  
Gailing Hou ◽  
...  

<b><i>Background:</i></b> Our previous studies had shown pirfenidone (PFD) not only improved tubulointerstitial fibrosis (TIF) but also inhibited the expression of microRNA-21 (miR-21) in the renal tissue of unilateral urethral obstruction (UUO) rats. This study aims to investigate whether PFD can attenuate TIF through inhibiting miR-21 in UUO rats. <b><i>Methods:</i></b> Sprague Dawley rats were divided randomly into sham-operated group, UUO group, and PFD and olmesartan (Olm) treatment groups. Samples were collected on day 14. Expression of miR-21, TGF-β1, Smad3, and Smad7 mRNA in the renal tissue was detected using real-time quantitative PCR. Immunohistochemistry was performed to assess the protein expressions of collagen III, E-cadherin, and α-SMA. Automated capillary Western blotting was used to detect the quantitative expression of TGF-β1, Smad3, p-Smad3, Smad7, collagen III, E-cadherin, and α-SMA in renal tissues. The expression of miR-21 and Smad7 mRNA and the protein levels of collagen III and α-SMA were examined in the miR-21-overexpressing cell line, NRK-52E. <b><i>Results:</i></b> Compared with the UUO group, both PFD and Olm inhibited renal tubular dilation, diffused epithelial cell degeneration and necrosis, and reduced renal interstitial edema, inflammatory cell infiltration, and collagen fiber deposition, while no significant difference between PFD group and Olm group. Informatics-based approaches identified Smad7 as a likely candidate for regulation by miR-21. Compared with the sham group, miR-21 expression was upregulated in the UUO group resulting in the downregulation of Smad7 expression due to degradation. The overexpression of miR-21 in the in vitro model downregulated Smad7 and promoted EMT and ECM accumulation. Protein levels of TGF-β1, Smad3, p-Smad3, collagen III, and α-SMA were upregulated, while E-cadherin protein was downregulated in the UUO group than in the sham group. PFD rather than Olm decreased the expression of miR-21 and increased the expression level of Smad7 mRNA and then inhibited the TGF-β1/Smad3 signaling pathway. Olm only downregulated the TGF-β1/Smad3 signaling pathway. <b><i>Conclusions:</i></b> PFD improves TIF by downregulating the expression of miR-21, then elevating Smad7, and finally inhibiting the activation of the TGF-β1/Smad3 signaling pathway in UUO rats.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qingming Xue ◽  
Hong Jiang ◽  
Jinjie Wang ◽  
Dongshan Wei

Background. LIM and SH3 domain protein 1 (LASP1), highly expressed in a variety of tumors, is considered as a novel tumor metastasis biomarker. However, it is unknown which signaling pathway works and how the signal transduces into cell nucleus to drive tumor progression by LASP1. The aim of this study is to explore the essential role of LASP1 in TGF-β1-induced epithelial-mesenchymal transition (EMT) in lung cancer cells. Methods. The gene and protein levels of LASP-1 were successfully silenced or overexpressed by LASP-1 shRNA lentivirus or pcDNA in TGF-β1-treated lung cancer cell lines, respectively. Then, the cells were developed EMT by TGF-β1. The cell abilities of invasion, migration, and proliferation were measured using Transwell invasion assay, wound healing assay, and MTT assay, respectively. Western blotting was used to observe the protein levels of EMT-associated molecules, including N-cadherin, vimentin, and E-cadherin, and the key molecules in the TGF-β1/Smad/Snail signaling pathway, including pSmad2 and Smad2, pSmad3 and Smad3, and Smad7 in cell lysates, as well as Snail1, pSmad2, and pSmad3 in the nucleus. Results. TGF-β1 induced higher LASP1 expression. LASP1 silence and overexpression blunted or promoted cell invasion, migration, and proliferation upon TGF-β1 stimulation. LASP1 also regulated the expression of vimentin, N-cadherin, and E-cadherin in TGF-β1-treated cells. Activity of key Smad proteins (pSmad2 and pSmad3) and protein level of Smad7 were markedly regulated through LASP1. Furthermore, LASP1 affected the nuclear localizations of pSmad2, pSmad3, and Snail1. Conclusion. This study reveals that LASP1 regulates the TGF-β1/Smad/Snail signaling pathway and EMT markers and features, involving in key signal molecules and their nuclear levels. Therefore, LASP1 might be a drug target in lung cancer.


2016 ◽  
Vol 39 (1) ◽  
pp. 294-302 ◽  
Author(s):  
Feifei Zhang ◽  
Yi Dang ◽  
Yingxiao Li ◽  
Qingqing Hao ◽  
Rong Li ◽  
...  

Backgroun/Aims: To explore the effect of cardiac contractility modulation (CCM) on myocardial fibrosis in heart failure and to investigate the underlying mechanism. Methods: Rabbits were randomly divided into sham group, HF group and CCM group. A rabbit model of chronic heart failure (CHF) was induced 12 weeks after aortic constriction by pressure unloading. Then cardiac contractility modulation was delivered to the myocardium lasting six hours per day for 4 weeks. Histology examination was carried out to evaluate the myocardial pathological changes. Protein levels of collagen I, collagen III, α-SMA, MMP2, MMP9, TIMP1, TGF-β1 and Smad3 were measured by western blot analysis. Results: Histology examination results showed that CCM therapy attenuated myocardial fibrosis and collagen deposition in rabbits with CHF. In addition, protein levels of collagen I, collagen III, α-SMA, MMP2, MMP9, TIMP1, TGF-β1 and Smad3 were down regulated. Conclusion: CCM therapy exerted protective effects against myocardial fibrosis potentially by inhibiting TGF-β1/Smad3 signaling pathway in CHF rabbits.


2021 ◽  
Vol 19 (4) ◽  
pp. 508-513
Author(s):  
Jinhao Wu ◽  
Chao Huang ◽  
Gang Kan ◽  
Hanyu Xiao ◽  
Xiaoping Zhang ◽  
...  

Obstructive nephropathy often leads to renal tubulointerstitial fibrosis. Understanding of the pathogenesis of renal tubulointerstitial fibrosis caused by obstructive nephropathy is crucial to the development of effective therapeutic drugs to improve the prognosis of the patients. Silymarin, a polyphenolic flavonoid extracted from plants, has been shown to exhibit antiinflammatory and antioxidant effects ameliorating liver and kidney damage. However, the effect of silymarin on renal fibrosis in obstructive nephropathy remains to be explored. In this study, we found silymarin improved interstitial fibrosis and apoptosis induced by TGF-β1 and ameliorated oxidative damage. Our data further confirmed that silymarin regulates the TGF-β1/ Smad3 signaling pathway, and therefore improves renal tubular interstitial fibrosis caused by obstructive nephropathy.


2018 ◽  
Vol 47 (3) ◽  
pp. 1007-1024 ◽  
Author(s):  
Yi-Gang Qian ◽  
Zhou Ye ◽  
Hai-Yong Chen ◽  
Zhen Lv ◽  
Ai-Bin Zhang ◽  
...  

Background/Aims: Pancreatic cancer is an aggressive malignancy as a result of highly metastatic potential. The current study was carried out to alter the expression of LINC01121 in pancreatic cancer, with the aim of elucidating its effects on the biological processes of cell proliferation, migration, invasion, and apoptosis. We hypothesized that both the GLP1R gene and cAMP/PKA signaling pathway participate in the aforementioned process. Methods: Microarray data (GSE14245, GSE27890 and GSE16515) and annotating probe files linked to pancreatic cancer were downloaded through the GEO database. The Multi Experiment Matrix (MEM) site was used to predict the target gene of lncRNA. Both pancreatic cancer tissues (n = 56) and paracancerous tissues (n = 45) were collected from patients diagnosed with pancreatic cancer. Immunohistochemistry was applied to identify the positive expression rate of GLP1R protein. Isolated pancreatic cancer cells and PANC-1 cells were independently classified into the blank, negative control (NC), LINC01121 vector, siRNA-LINC01121, siRNA-GLP1R and siRNA-LINC01121 + siRNA-GLP1R groups. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were applied to detect the expressions of LINC01121, GLP1R, cAMP, PKA, CREB, Bcl-2, Bad and PCNA. Cell proliferation, migration, invasion, cycle progression, and apoptosis were examined by MTT assay, scratch test, Transwell assay and flow cytometry analyses of Annexin V-FITC/PI staining. Results: Observations were made indicating that LINC01121 was highly expressed, while low expressions of GLP1R in pancreatic cancer were detected based on microarray data, which was largely in consistent with the data collected of LINC01121 and GLP1R within the tissues. The target prediction program and luciferase activity analysis was testament to the notion suggesting that GLP1R was indeed a target of LINC01121. In contrast to the blank and NC groups, the LINC01121 vector group exhibited increased expressions of LINC01121; decreased mRNA and protein levels of GLP1R, Bad, cAMP, and PKA; increased protein levels of CREB, Bcl-2, PCNA, p-PKA and p-CREB; increased cell proliferation, migration and invasion; and decreased cell apoptosis. There was no significant difference detected among the blank, NC, and siRNA-LINC01121 + siRNA-GLP1R groups, except that decreased LINC01121 expression was determined in the siRNA-LINC01121 + siRNA-GLP1R group. Parallel data were observed in the pancreatic cancer cells and PANC-1 cells. Conclusion: The current study presents evidence indicating that LINC01121 might inhibit apoptosis while acting to promote proliferation, migration, and invasion of pancreatic cancer cells, supplementing the stance held that LINC01121 functions as a tumor promoter by means of its involvement in the process of translational repression of the GLP1R and inhibition of the cAMP/PKA signaling pathway.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256066
Author(s):  
Jingwen Xiao ◽  
Yan Zhang ◽  
Yuan Tang ◽  
Hengfen Dai ◽  
Yu OuYang ◽  
...  

Background Atrial fibrillation (AF) is a clinically common arrhythmia that affects human health. Myocardial fibrosis serves as an important contributor to AF. Recently, miRNA-1202 have been reported to be up-regulated in AF. However, the role of miRNA-1202 and its mechanism in myocardial fibrosis remain unclear. Methods Human cardiac fibroblasts (HCFs) were used to construct a fibrosis model by TGF-β1 induction. The expression of miR-1202 was measured by qRT-PCR. Cell proliferation was assessed by CCK-8 assays. Protein expression levels were measured by western blot. Collagen accumulation was measured by ELISA. The relationship between miR-1202 and nNOS was investigated by luciferase reporter assays. Results MiR-1202 expression was obviously increased in HCFs and was both time- and dose-independent. MiR-1202 could increase the proliferation and collagen I, collagen III, and α-SMA levels with or without TGF-β1. MiR-1202 could also increase TGF-β1 and p-Smad2/3 protein levels in comparison to the control group. However, they were obviously decreased after inhibitor transfection. MiR-1202 targets nNOS for negative regulation of HCFs fibrosis by decreasing cell differentiation, collagen deposition and the activity of the TGF-β1/Smad2/3 pathway. Co-transfection of miR-1202 inhibitor and siRNA of nNOS inhibited nNOS protein expression, thereby enhancing the HCFs proliferation. Furthermore, co-transfection of the miR-1202 inhibitor and siRNA of nNOS significantly promoted collagen I, collagen III, TGF-β1, Smad2/3 and α-SMA protein expression and Smad2/3 protein phosphorylation. These findings suggested that miR-1202 promotes HCFs transformation to a pro-fibrotic phenotype by targeting nNOS through activating the TGF-β1/Smad2/3 pathway.


2018 ◽  
Vol 46 (2) ◽  
pp. 451-460 ◽  
Author(s):  
Fang-Fang He ◽  
Ren-Yu You ◽  
Chen Ye ◽  
Chun-Tao Lei ◽  
Hui Tang ◽  
...  

Background/Aims: Renal tubular epithelial cells and fibroblasts are the main sources of myofibroblasts, and these cells produce the extracellular matrix during tubulointerstitial fibrosis (TIF). Histone deacetylases (HDAC) inhibitors exert an antifibrogenic effect in the skin, liver and lung. Sirtuin 2 (SIRT2), which is a class III HDAC, is an important member of NAD+-dependent protein deacetylases. The current study evaluated the role of SIRT2 in renal TIF. Methods: Immunohistochemical staining and Western blot were performed to evaluate SIRT2 expression in TIF patients and unilateral urethral obstruction (UUO) mice. Western blot was used to assess the protein levels of SIRT2, α-SMA, collagen III, fibronectin, and MDM2 in tubular epithelial cells and fibroblasts. The specific inhibitor AGK2 was used to inhibit SIRT2 activity, and targeted siRNA was used to suppress SIRT2 expression. Results: SIRT2 expression increased in the tubulointerstitium of TIF patients and UUO mice. SIRT2 inhibition ameliorated TIF in UUO mice. SIRT2 expression in tubular cells was unchanged after exposure to TGF-β1. The SIRT2-specifc inhibitor AGK2 did not attenuate TGF-β1-induced tubular epithelial-mesenchymal transition. However, SIRT2 was upregulated in fibroblasts, and fibroblasts were activated after TGF-β1 treatment. Genetic knockdown and chemical inhibition of SIRT2 attenuated TGF-β1-induced fibroblast activation. We also explored the downstream signaling of SIRT2 during fibroblast activation. Genetic knockdown and chemical inhibition of SIRT2 suppressed TGF-β1-induced increase in MDM2 expression, and inhibition of the MDM2-p53 interaction using Nutlin-3 did not suppress SIRT2 upregulation. Conclusion: Our results suggest that SIRT2 participates in the activation of fibroblasts and TIF, which is mediated via regulation of the MDM2 pathway, and the downregulation of SIRT2 may be a therapeutic strategy for renal fibrosis.


2008 ◽  
Vol 295 (3) ◽  
pp. F707-F716 ◽  
Author(s):  
Aparna Vidyasagar ◽  
Shannon Reese ◽  
Zeki Acun ◽  
Debra Hullett ◽  
Arjang Djamali

We hypothesized that heat shock protein 27 (HSP27), a small heat shock protein with actin-remodeling properties, is involved in the pathogenesis of kidney tubulointerstitial fibrosis. We first examined its expression in the rat unilateral ureteral obstruction (UUO) model of kidney fibrosis and epithelial-to-mesenchymal transition (EMT). Immunoblot analyses showed that UUO resulted in significant upregulation of TGF-β1, α-smooth muscle actin (α-SMA), total and phosphorylated HSP27, and phosphorylated p38MAPK. Immunofluorescence studies showed that HSP27 costained with TGF-β1, α-SMA, and E-cadherin in areas of tubulointerstitial injury. We next attempted to translate these studies in an in vitro model of EMT using rat proximal tubular epithelial cells (NRK52E). TGF-β1 (20 ng/ml) treatment resulted in EMT (upregulation of α-SMA and downregulation of E-cadherin) and significant upregulation of total and phosphorylated HSP27 and p38MAPK after 3 days. Real-time PCR analyses showed that HSP27, vimentin, and fibronectin increased whereas E-cadherin mRNA levels decreased. Double-staining immunofluorescence studies showed intracytoplasmic colocalization of HSP27 with both F-actin and E-cadherin in cells undergoing EMT. HSP27 overexpression by transient transfection significantly increased E-cadherin while decreasing E-cadherin repressor Snail levels. In aggregate, these studies show that HSP27 is involved in the pathogenesis of TGF-β1-induced EMT and chronic tubulointerstitial fibrosis. HSP27 overexpression may delay injury by upregulating E-cadherin through downregulation of Snail.


Sign in / Sign up

Export Citation Format

Share Document