Crosslinked layered surfaces of heparin and poly(L-lysine) enhance mesenchymal stromal cells behavior in the presence of soluble interferon gamma

2021 ◽  
Author(s):  
Mahsa Haseli ◽  
Luis Pinzon-Herrera ◽  
Jorge Almodovar

Human mesenchymal stromal cells (hMSCs) are multipotent cells that have been proposed for the treatment of immune-mediated diseases. Culturing hMSCs on tissue culture plastic reduces their therapeutic potential in part due to the lack of extracellular matrix components. The aim of this study is to evaluate multilayers of heparin and poly(L-lysine) (HEP/PLL) as a bioactive surface for hMSCs stimulated with soluble interferon gamma (IFN‐γ). Multilayers were formed, via layer-by-layer assembly, with HEP as the final layer and supplemented with IFN-γ in the culture medium. Multilayer construction and chemistry were confirmed using Azure A staining, quartz crystal microbalance (QCM), and X-ray photoelectron spectroscopy. hMSCs adhesion, viability, and differentiation, were assessed. Results showed that (HEP/PLL) multilayer coatings were poorly adhesive for hMSCs. However, performing chemical crosslinking using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) significantly enhanced hMSCs adhesion and viability. The immunosuppressive properties of hMSCs cultured on crosslinked (HEP/PLL) multilayers were confirmed by measuring the level of indoleamine 2,3-dioxygenase (IDO) secretion. Lastly, hMSCs cultured on crosslinked (HEP/PLL) multilayers in the presence of soluble IFN- γ successfully differentiated towards the osteogenic and adipogenic lineages as confirmed by Alizarin red, and oil-red O staining, as well as alkaline phosphatase activity. This study suggests that crosslinked (HEP/PLL) films can modulate hMSCs response to soluble factors, which may improve hMSCs-based therapies aimed at treating several immune diseases.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Bo La Han ◽  
Lan Zhou ◽  
Qiunong Guan ◽  
Gerald da Roza ◽  
Hao Wang ◽  
...  

The therapeutic potential of mesenchymal stromal cells (MSCs) from various tissue origins have extensively been explored in both experimental and clinical studies, and peritoneal dialysis effluent-derived MSC (pMSC) may be an easily obtainable MSC source for clinical applications. In this study, we expanded and characterized the pMSCs after expansion in a human protein culture medium. The pMSCs were expanded in plastic dishes with the human protein medium. MSC marker expression was examined by flow cytometry. Spherical formation was tested by hanging drop method, and osteogenic, adipogenic, and chondrogenic differentiation capacities were confirmed by positive staining with Alizarin red, Oil red O, and Alcian blue, respectively. Here, we showed that after four passages of culturing in plastic dishes, pMSCs in the human protein medium displayed a homogeneous pattern of classical MSC markers (positive: CD29, CD44, CD73, CD90, and CD166; negative: CD14, CD34, CD45, CD79a, CD105, CD146, CD271, HLA-DR, SSEA-4, and Stro-1), while in the standard medium, pMSCs from some donors were CD45 or HLA-DR positive. For nonclassical MSC markers, pMSCs were CD200 positive from all the donors, negative for CD163, CD271, CD36, and CD248, and either positive or negative for CD274 and CD140b. Further, pMSCs from the human protein medium had the spherical formation capacity and multipotent differentiation capacityin vitro. In conclusion, upon expansion in a human protein medium, pMSCs showed a differential MSC marker expression profile from those of bone marrow or adipose tissue-derived MSCs and could maintain the multipotency. The therapeutic potential of the pMSCs requires further investigation.


2021 ◽  
pp. 1-14
Author(s):  
Caroline Mathen ◽  
Mrunal Ghag Sawant ◽  
Raghubansh Gupta ◽  
Wilfrid Dsouza ◽  
Shilpa G. Krishna

Mesenchymal stromal cells and the derived conditioned media represent an area of tremendous medical interest and, among other clinical applications, are currently being extensively explored for wound healing. The aim of this study was to comparatively evaluate the wound healing potential of xeno-free human umbilical cord-derived mesenchymal stromal cells (MSCs) and the conditioned media (CM) in a full-thickness excision wound model in rats. The evaluation parameters included rate of wound healing, serum cytokine analyses, collagen content, histopathology, and hyperspectral imaging as an independent qualitative and quantitative tool. Both the cell-based and cell-free approaches scored better in lower inflammation, as evidenced in lower IL-10 and stable IL-6 levels, and improved rate of wound healing (<i>p</i> &#x3c; 0.0001). More importantly, no adverse reaction or rejection was observed although human MSCs and CM were used in a xenogeneic model. The presence of hFGF, hHGF, hGCSF, hIL-1Ra, hVEGF, and hIL-6 in the secretome may elucidate the regenerative potential of the xeno-free cell-based and cell-free approaches which have translational value for advanced wound care. The results revealed the therapeutic potential of both the cell-based and cell-free approaches for wound healing.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2396
Author(s):  
Katarzyna Zielniok ◽  
Anna Burdzinska ◽  
Beata Kaleta ◽  
Radoslaw Zagozdzon ◽  
Leszek Paczek

The therapeutic potential of mesenchymal stromal cells (MSCs) is largely attributed to their immunomodulatory properties, which can be further improved by hypoxia priming. In this study, we investigated the immunomodulatory properties of MSCs preconditioned with hypoxia-mimetic Vadadustat (AKB-6548, Akebia). Gene expression analysis of immunomodulatory factors was performed by real-time polymerase chain reaction (real-time PCR) on RNA isolated from six human bone-marrow derived MSCs populations preconditioned for 6 h with 40 μM Vadadustat compared to control MSCs. The effect of Vadadustat preconditioning on MSCs secretome was determined using Proteome Profiler and Luminex, while their immunomodulatory activity was assessed by mixed lymphocyte reaction (MLR) and Culturex transwell migration assays. Real-time PCR revealed that Vadadustat downregulated genes related to immune system: IL24, IL1B, CXCL8, PDCD1LG1, PDCD1LG2, HIF1A, CCL2 and IL6, and upregulated IL17RD, CCL28 and LEP. Vadadustat caused a marked decrease in the secretion of IL6 (by 51%), HGF (by 47%), CCL7 (MCP3) (by 42%) and CXCL8 (by 40%). Vadadustat potentiated the inhibitory effect of MSCs on the proliferation of alloactivated human peripheral blood mononuclear cells (PBMCs), and reduced monocytes-enriched PBMCs chemotaxis towards the MSCs secretome. Preconditioning with Vadadustat may constitute a valuable approach to improve the therapeutic properties of MSCs.


2018 ◽  
Vol 6 (16) ◽  
pp. e13831 ◽  
Author(s):  
Matthew Schwede ◽  
Erin M. Wilfong ◽  
Rachel L. Zemans ◽  
Patty J. Lee ◽  
Claudia dos Santos ◽  
...  

Lupus ◽  
2018 ◽  
Vol 27 (13) ◽  
pp. 2161-2165 ◽  
Author(s):  
J Barbado ◽  
S Tabera ◽  
A Sánchez ◽  
J García-Sancho

Animal and human studies have suggested the potential of mesenchymal stromal cells (MSCs) to treat systemic lupus erythematosus (SLE). Here, we present the results of compassionate MSC treatments for three SLE patients to provide the proof of concept for a randomized and controlled clinical trial. Three patients of different ethnicities who suffer from chronic SLE, and who presented with class IV active proliferative nephritis confirmed by biopsy, were treated with allogeneic MSCs from healthy donors. Ninety million cells were infused intravenously into each patient during high and very high activity disease flare-ups and follow-up was continued for 9 months. Multi-organic affectation was quantified by the SLE disease activity index (SLEDAI), and indicators of lupus nephritis activity, such as proteinuria, as well as lymphocyte and monocyte antigens and anti-HLA antibodies were measured at 1, 3, 6, and 9 months after treatment. Proteinuria levels improved dramatically during the 1st month after treatment and the ameliorations were sustained throughout the follow-up period. SLEDAI scores revealed early, durable, and substantial remissions that were complete for two patients and partial for the third patient and that permitted medication doses to be reduced 50–90%. These favourable outcomes support completion of the randomized and controlled MSC trial for SLE.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1220-1220
Author(s):  
Claudia Cappuzzello ◽  
Andrea Doni ◽  
Erica Dander ◽  
Fabio Pasqualini ◽  
Manuela Nebuloni ◽  
...  

Abstract Although several studies have shown the capacity of mesenchymal stromal cells (MSCs) to repair and regenerate different tissues, the mechanisms underlying these processes are not understood. Long Pentraxin 3 (PTX3) is a multifunctional protein produced by MSCs and other cell subsets upon activation with inflammatory cytokines. PTX3 is involved in innate immunity, inflammation and extracellular matrix deposition. In the present study we analyzed the potential role of PTX3 in wound repair process induced by MSCs. PTX3 knockout MSCs (PTX3-/-MSCs) were collected from bone marrow of PTX3-/- mice. After 3-5 culture passages the expression of surface markers was analyzed by flow cytometry and their osteogenic and adipogenic differentiation capacity was detected by alizarin red O and oil red S staining, respectively. The ability of PTX3-/-MSCs to abrogate T cell proliferation was evaluated by co-culturing MSCs and PBMCs previously activated with Phytohaemagglutinin. Finally, equal number of both PTX3-/-MSCs and wild type (WT) MSCs were implanted into excisional wounds created by a biopsy punch on the back of allogenic WT and PTX3-/- mice. Wound area was measured up to 14 day and calculated using an image analysis program. The wound specimens were collected at 2, 7 and 14 days and processed for histological analysis. We demonstrated that PTX3-/-MSCs, similarly to WT MSCs, displayed typical fibroblastoid morphology, they expressed common MSC markers and were able to differentiate into adipocytes and osteoblasts. In addition, they drastically decreased the mitogen-induced proliferation of lymphocyte. Importantly, in a mouse model of wound healing, PTX3-/- MSCs showed a highly significant defect in wound closure compared to WT MSCs at each time point. Histological evaluation of skin samples treated with PTX3-/- MSCs showed a reduction of the granulation tissue and a significant increase of neutrophils (GR-1+) in the wound bed. Moreover, wounds treated with PTX3-/- MSCs were characterized by an excessive accumulation of fibrin at the 2nd day after injury. Accordingly, PTX3-/- MSCs showed a defective ability to degrade the fibrin matrix in vitro. Finally, PTX3-/- MSCs failed to close the ulcers in PTX3-/- mice. In conclusion, we demonstrated that PTX3 deficiency does not alter the phenotype and the capacity of MSCs to differentiate into mesengetic lineages; however, the production of PTX3 represents an essential requirement for MSC ability of enhancing tissue repair. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document