scholarly journals Design and analysis of microstrip antenna with zig-zag feeder for wireless communication applications

2021 ◽  
Vol 10 (3) ◽  
pp. 1388-1394
Author(s):  
Malik Jasim Farhan ◽  
Ali Khalid Jassim

This paper is presented a microstrip antenna with a zig-zag feeder for wireless communication, it has a wideband frequency spectrum (2-14) GHz. The proposed antenna is designed with a zig zag feed line which gave a wideband frequency and acceptable gain (7.448-5.928) dB, this antenna has zig zag slots printed in the ground plane on a lower side of the dielectric substrate, a certain form tuning stub is used to increase the matching between the feeder in the top layer of the substrate and ground plane in the bottom, this stub has an elliptical slot to performance matching input impedance with the feed line. The feeding technique used to feed this antenna is a strip feed line of 50 Ω. Different types of techniques are used to enhance the bandwidth of this antenna to get a wideband suitable for the requirements of the UWB antenna such as adjust the feed point position of the feed line with a tuning stub. All the radiation properties of the presented antenna are tested such as bandwidth, radiation pattern, and, gain.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. N. Shakib ◽  
M. Moghavvemi ◽  
W. N. L. Mahadi

A new compact planar notched ultrawideband (UWB) antenna is designed for wireless communication application. The proposed antenna has a compact size of0.182λ × 0.228λ × 0.018λwhereλis the wavelength of the lowest operating frequency. The antenna is comprised of rectangular radiating patch, ground plane, and an arc-shaped strip in between radiating patch and feed line. By introducing a new Tuning Fork-shaped notch in the radiating plane, a stopband is obtained. The antenna is tested and measured. The measured result indicated that fabricated antenna has achieved a wide bandwidth of 4.33–13.8 GHz (at −10 dB return loss) with a rejection frequency band of 5.28–6.97 GHz (WiMAX, WLAN, and C-band). The effects of the parameters of the antenna are discussed. The experiment results demonstrate that the proposed antenna can well meet the requirement for the UWB communication in spite of its compactness and small size.


This article gives brief view of UWB microstrip antenna characteristic without a slot and with a triangular slot on the patch of the MSA. Nowadays UWB antenna is a must for wireless communication with the narrow pulses in the series of nanoseconds, for the application of ultra- wideband in frequency domain for very short distance and minimum power densities. The research in this field has become more sought-after and therefore the demand on UWB microstrip antenna is rising rapidly. The currents along the verge of the slot initiates additional resonance, it concords with the main patch resonance, which result in the production of overall frequency response characteristics, ultimately leads to wideband. Thus a crisp novel ultra-wideband configuration with and without a triangular slot have been proposed. And the radiation is in the broadside of antenna with small variation along the entire bandwidth. Thus improving the robustness of the MSA and cost reduction. Due to the potential of UWB antennas,they are significant to improve the performance of wireless communication systems. The MSA (microstrip antenna) is designed with FR-4 substrate. There is increase in bandwidth due to the introduction of triangular slot in the patch and the variation in the antenna parameters are briefed below. This document can be used as guide to design small MSA for mobile communication.


Author(s):  
Mousaab M. Nahas ◽  

Microstrip patch antenna is attractive for various applications due to its easy fabrication, low cost and small size. It simply comprises of a radiating patch and ground plane that are separated by a dielectric substrate. However, the resonance bandwidth of the microstrip antenna is still an issue that needs to be considered in research. This paper aims to enhance the bandwidth of a microstrip antenna or introduce more resonant frequencies within the Super High Frequency (SHF) band. The paper demonstrates empirical results for circular-shaped patch antenna using the High Frequency Structure Simulator (HFSS). It begins by investigating different patch sizes and substrate materials, so that an optimal preliminary design is introduced. Then, different slot shapes are inserted into the patch for significant enhancement of the resonance characteristics. As a result, new ultra-wideband (UWB) antenna designs are presented with bandwidth results reaching 15.5 GHz within the C, X, Ku and K bands. Also, new multiband antenna designs are presented with improved reflection valleys in the Ku, K and Ka bands.


2019 ◽  
Vol 8 (4) ◽  
pp. 3257-3263

Antennas play a vital role in wireless communication; a thirst of excellence in this area is unending. Proposed work describes a concept of fractal multiband antenna designed in the hexagon shape. Basically fractal is the concept used in Microstrip antenna for giving better results than conventional Microstrip antenna. By using hexagonal fractal antenna we can possibly achieve the radiation pattern with high gain. The coaxial feeding is used and multiple hexagons are interconnected in array for maintaining conductivity and to preserve electrical self similarity. Hexagonal antenna is used for different wireless applications. The proposed antenna frequency band covers a large number of wireless communication applications including GPS (1.6GHz), Bluetooth (2.4 GHz) & WLAN (3.6GHz). Antenna design has been designed and simulated by using the software Ansoft’s HFSS and parameters like bandwidth return loss, directivity, VSWR are analyzed. Fabrication of the antenna is done by using wet-etching method, on FR-4 dielectric substrate material. Experimental results are taken on Vector Network Analyzer (VNA) and those obtained results were compared with simulated results. The hexagonal fractal antenna array is found to possess predictable multiband characteristics.


This paper presents the fabrication of an octagonal fractal hybrid micro strip radiator patch antenna that operates over a frequency range of 1.5 GHz to 2GHz suitable for low frequency wireless and mobile applications. The radiator has a dimension of 85x85mm2 on the radiating side and 100x86mm2 ground plane. The model is fabricated on Fire Redundant4 substrate with thickness of 1.6mm over a 10x10mm2 dimension and uses coaxial feeding technique. The model is tested for its performance in the range of 1.5 to 2 GHz on the radiator test bench consists of MIC10 antenna trainer kit with an allowable frequency of up to 2GHz. The radiation characteristics shown are having good return loss and average gain of 39dB with omni directional radiation pattern. The size is to be optimized as the dimensions are very large compared to the usual requirements.


2021 ◽  
Author(s):  
Srikanth Itapu

Abstract A Co-Planar Waveguide fed circular ultra-wide band antenna with modified ground-plane and feedline is designed on a FR4 (ϵr=4.3) substrate of thickness 0.01λ0. The proposed antenna exhibits an overall impedance bandwidth ranging from 2.99 GHz to 18.0 GHz and beyond (with S11< -10 dB). Design parameters have been optimized to achieve the UWB bandwidth. The measured radiation patterns of this antenna are omnidirectional in H- plane and bidirectional in E-plane. An extended impedance bandwidth is achieved as a result of modified feed-line. The proposed antenna can be used for medical imaging and urban IoT applications.


2020 ◽  
Vol 8 (5) ◽  
pp. 3988-3990

In this paper, A coplanar waveguide (CPW) ultra-wideband(UWB) antenna is designed, analyzed and simulated by computer simulation technology(CST). The proposed antenna is fabricated on FR-4 dielectric substrate. A microstrip feed line is used to excite the antenna.The ground plane is slotted to improve the impedance bandwidth (BW). Here, a rectangular patch is used as radiator and two corners out of four are truncated to improve impedance matching and UWB characterization.This antenna satisfies UWB characteristics like VSWR<2, Return loss(S11)<-10 dB,Gain<5dB and the antenna is operating within the frequency range of 1.59 to 11.87 GHz range which covers whole ultra wideband i.e. 3.1 to 10.6 GHz range.


In this paper, simple triband Multiple Input and Multiple Output (MIMO) antenna is proposed for wireless communication technology. This antenna consists of two symmetric monopoles which are placed at a distance of 0.106λ0 and for board area it occupies 0.25λ0*0.26λ0 . By integrating a stub in the ground plane and adding the stub in the feed line, isolation is achieved more than 20dB.This triband MIMO antenna operates under 2.5GHz, 3.3GHz and 4.4 GHz. The proposed antenna gives Radiation Patterns and Stable Gain. Mean effective gain (MEG) and Diversity Gain (DG) are also measured.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 484
Author(s):  
K V.Prashanth ◽  
A Tejasri ◽  
K Sandeep ◽  
U Sateesh Kumar ◽  
G Swarupa

In this proposition, a traditional UWB antenna with twofold indent channels was intended for a few remote applications. The exhibited antenna is outlined having estimations of 30 × 35 × 1.6 mm3 with a fix of rectangular staircase design. The dismissal bands are WLAN at 5 GHz (5.1 - 5.8 GHz) and the satellite X-band from space to earth (7.25 - 7.75 GHz). The patch with a step design with a modified π-formed opening gets the ultra-wide band. The UWB scope of 3.1 - 10.6 GHz affirmed by FCC can possibly cause interferences in the various wireless systems applications.. With a specific end goal to lessen these interferences, we settled on the band indent. In this proposed outline, the WLAN has scores setting a U-molded opening in the patch and the X-band has indents with a reversed T-shape in the ground plane.   


Author(s):  
Anwar Sabah ◽  
Malik Jasim Frhan

<span>A printed monopole patch Ultra Wide Band (UWB) antenna for use in UWB application is proposed in this paper. The proposed antenna consists of a patch with appropriate dimensions on one side of a dielectric substrate, and a partial ground plane on the other side of the substrate. The techniques that used to enhance the bandwidth are the partial ground plane, feed point position and adjusted feed gap. The substrate that is used in the proposed antenna is Fr4 epoxy, the optimum dimensions of the antenna are 40mm×28mm×1.5mm this antenna designed by HFSS program. The band achieved by the proposed antenna is from 3.6GHz to 15GHz. This antenna is fabricated in the ministry of science and technology Baghdad-Iraq and a good agreement between simulation and measured S11 is achieved. </span>


Sign in / Sign up

Export Citation Format

Share Document