scholarly journals p-norms of histogram of oriented gradients for X-ray images

Author(s):  
Nuha H. Hamada ◽  
Faten F. Kharbat

<span>Lebesgue spaces (</span><em><span>L<sup>p</sup></span></em><span> over </span><em><span>R<sup>n</sup></span></em><span>) play a significant role in mathematical analysis. They are widely used in machine learning and artificial intelligence to maximize performance or minimize error. The well-known histogram of oriented gradients (HOG) algorithm applies the 2-norm (Euclidean distance) to detect features in images. In this paper, we apply different </span><em><span>p</span></em><span>-norm values to identify the impact that changing these norms has on the original algorithm. The aim of this modification is to achieve better performance in classifying X-ray medical images related to of COVID-19 patients. The efficiency of the </span><em><span>p</span></em><span>-HOG algorithm is compared with the original HOG descriptor using a support vector machine implemented in Python. The results of the comparisons are promising, and the </span><em><span>p</span></em><span>-HOG algorithm shows greater efficiency in most cases.</span>

2021 ◽  
Author(s):  
Jeniffer Luz ◽  
Scenio De Araujo ◽  
Caio Abreu ◽  
Juvenal Silva Neto ◽  
Carlos Gulo

Since the beginning of the COVID-19 outbreak, the scientific communityhas been making efforts in several areas, either by seekingvaccines or improving the early diagnosis of the disease to contributeto the fight against the SARS-CoV-2 virus. The use of X-rayimaging exams becomes an ally in early diagnosis and has been thesubject of research by the medical image processing and analysiscommunity. Although the diagnosis of diseases by image is a consolidatedresearch theme, the proposed approach aims to: a) applystate-of-the-art machine learning techniques in X-ray images forthe COVID-19 diagnosis; b) identify COVID-19 features in imagingexamination; c) to develop an Artificial Intelligence model toreduce the disease diagnosis time; in addition to demonstrating thepotential of the Artificial Intelligence area as an incentive for theformation of critical mass and encouraging research in machinelearning and processing and analysis of medical images in the Stateof Mato Grosso, in Brazil. Initial results were obtained from experimentscarried out with the SVM (Support Vector Machine) classifier,induced on a publicly available image dataset from Kaggle repository.Six attributes suggested by Haralick, calculated on the graylevel co-occurrence matrix, were used to represent the images. Theprediction model was able to achieve 82.5% accuracy in recognizingthe disease. The next stage of the studies includes the study of deeplearning models.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 374 ◽  
Author(s):  
Sudhanshu Kumar ◽  
Monika Gahalawat ◽  
Partha Pratim Roy ◽  
Debi Prosad Dogra ◽  
Byung-Gyu Kim

Sentiment analysis is a rapidly growing field of research due to the explosive growth in digital information. In the modern world of artificial intelligence, sentiment analysis is one of the essential tools to extract emotion information from massive data. Sentiment analysis is applied to a variety of user data from customer reviews to social network posts. To the best of our knowledge, there is less work on sentiment analysis based on the categorization of users by demographics. Demographics play an important role in deciding the marketing strategies for different products. In this study, we explore the impact of age and gender in sentiment analysis, as this can help e-commerce retailers to market their products based on specific demographics. The dataset is created by collecting reviews on books from Facebook users by asking them to answer a questionnaire containing questions about their preferences in books, along with their age groups and gender information. Next, the paper analyzes the segmented data for sentiments based on each age group and gender. Finally, sentiment analysis is done using different Machine Learning (ML) approaches including maximum entropy, support vector machine, convolutional neural network, and long short term memory to study the impact of age and gender on user reviews. Experiments have been conducted to identify new insights into the effect of age and gender for sentiment analysis.


2020 ◽  
Vol 6 ◽  
pp. 205520762096835
Author(s):  
C Blease ◽  
C Locher ◽  
M Leon-Carlyle ◽  
M Doraiswamy

Background The potential for machine learning to disrupt the medical profession is the subject of ongoing debate within biomedical informatics. Objective This study aimed to explore psychiatrists’ opinions about the potential impact innovations in artificial intelligence and machine learning on psychiatric practice Methods In Spring 2019, we conducted a web-based survey of 791 psychiatrists from 22 countries worldwide. The survey measured opinions about the likelihood future technology would fully replace physicians in performing ten key psychiatric tasks. This study involved qualitative descriptive analysis of written responses (“comments”) to three open-ended questions in the survey. Results Comments were classified into four major categories in relation to the impact of future technology on: (1) patient-psychiatrist interactions; (2) the quality of patient medical care; (3) the profession of psychiatry; and (4) health systems. Overwhelmingly, psychiatrists were skeptical that technology could replace human empathy. Many predicted that ‘man and machine’ would increasingly collaborate in undertaking clinical decisions, with mixed opinions about the benefits and harms of such an arrangement. Participants were optimistic that technology might improve efficiencies and access to care, and reduce costs. Ethical and regulatory considerations received limited attention. Conclusions This study presents timely information on psychiatrists’ views about the scope of artificial intelligence and machine learning on psychiatric practice. Psychiatrists expressed divergent views about the value and impact of future technology with worrying omissions about practice guidelines, and ethical and regulatory issues.


2011 ◽  
Vol 130-134 ◽  
pp. 2047-2050 ◽  
Author(s):  
Hong Chun Qu ◽  
Xie Bin Ding

SVM(Support Vector Machine) is a new artificial intelligence methodolgy, basing on structural risk mininization principle, which has better generalization than the traditional machine learning and SVM shows powerfulability in learning with limited samples. To solve the problem of lack of engine fault samples, FLS-SVM theory, an improved SVM, which is a method is applied. 10 common engine faults are trained and recognized in the paper.The simulated datas are generated from PW4000-94 engine influence coefficient matrix at cruise, and the results show that the diagnostic accuracy of FLS-SVM is better than LS-SVM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arturo Moncada-Torres ◽  
Marissa C. van Maaren ◽  
Mathijs P. Hendriks ◽  
Sabine Siesling ◽  
Gijs Geleijnse

AbstractCox Proportional Hazards (CPH) analysis is the standard for survival analysis in oncology. Recently, several machine learning (ML) techniques have been adapted for this task. Although they have shown to yield results at least as good as classical methods, they are often disregarded because of their lack of transparency and little to no explainability, which are key for their adoption in clinical settings. In this paper, we used data from the Netherlands Cancer Registry of 36,658 non-metastatic breast cancer patients to compare the performance of CPH with ML techniques (Random Survival Forests, Survival Support Vector Machines, and Extreme Gradient Boosting [XGB]) in predicting survival using the $$c$$ c -index. We demonstrated that in our dataset, ML-based models can perform at least as good as the classical CPH regression ($$c$$ c -index $$\sim \,0.63$$ ∼ 0.63 ), and in the case of XGB even better ($$c$$ c -index $$\sim 0.73$$ ∼ 0.73 ). Furthermore, we used Shapley Additive Explanation (SHAP) values to explain the models’ predictions. We concluded that the difference in performance can be attributed to XGB’s ability to model nonlinearities and complex interactions. We also investigated the impact of specific features on the models’ predictions as well as their corresponding insights. Lastly, we showed that explainable ML can generate explicit knowledge of how models make their predictions, which is crucial in increasing the trust and adoption of innovative ML techniques in oncology and healthcare overall.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi139-vi139
Author(s):  
Jan Lost ◽  
Tej Verma ◽  
Niklas Tillmanns ◽  
W R Brim ◽  
Harry Subramanian ◽  
...  

Abstract PURPOSE Identifying molecular subtypes in gliomas has prognostic and therapeutic value, traditionally after invasive neurosurgical tumor resection or biopsy. Recent advances using artificial intelligence (AI) show promise in using pre-therapy imaging for predicting molecular subtype. We performed a systematic review of recent literature on AI methods used to predict molecular subtypes of gliomas. METHODS Literature review conforming to PRSIMA guidelines was performed for publications prior to February 2021 using 4 databases: Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL), and Web of Science core-collection. Keywords included: artificial intelligence, machine learning, deep learning, radiomics, magnetic resonance imaging, glioma, and glioblastoma. Non-machine learning and non-human studies were excluded. Screening was performed using Covidence software. Bias analysis was done using TRIPOD guidelines. RESULTS 11,727 abstracts were retrieved. After applying initial screening exclusion criteria, 1,135 full text reviews were performed, with 82 papers remaining for data extraction. 57% used retrospective single center hospital data, 31.6% used TCIA and BRATS, and 11.4% analyzed multicenter hospital data. An average of 146 patients (range 34-462 patients) were included. Algorithms predicting IDH status comprised 51.8% of studies, MGMT 18.1%, and 1p19q 6.0%. Machine learning methods were used in 71.4%, deep learning in 27.4%, and 1.2% directly compared both methods. The most common algorithm for machine learning were support vector machine (43.3%), and for deep learning convolutional neural network (68.4%). Mean prediction accuracy was 76.6%. CONCLUSION Machine learning is the predominant method for image-based prediction of glioma molecular subtypes. Major limitations include limited datasets (60.2% with under 150 patients) and thus limited generalizability of findings. We recommend using larger annotated datasets for AI network training and testing in order to create more robust AI algorithms, which will provide better prediction accuracy to real world clinical datasets and provide tools that can be translated to clinical practice.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6713
Author(s):  
Omid Khalaj ◽  
Moslem Ghobadi ◽  
Ehsan Saebnoori ◽  
Alireza Zarezadeh ◽  
Mohammadreza Shishesaz ◽  
...  

Oxide Precipitation-Hardened (OPH) alloys are a new generation of Oxide Dispersion-Strengthened (ODS) alloys recently developed by the authors. The mechanical properties of this group of alloys are significantly influenced by the chemical composition and appropriate heat treatment (HT). The main steps in producing OPH alloys consist of mechanical alloying (MA) and consolidation, followed by hot rolling. Toughness was obtained from standard tensile test results for different variants of OPH alloy to understand their mechanical properties. Three machine learning techniques were developed using experimental data to simulate different outcomes. The effectivity of the impact of each parameter on the toughness of OPH alloys is discussed. By using the experimental results performed by the authors, the composition of OPH alloys (Al, Mo, Fe, Cr, Ta, Y, and O), HT conditions, and mechanical alloying (MA) were used to train the models as inputs and toughness was set as the output. The results demonstrated that all three models are suitable for predicting the toughness of OPH alloys, and the models fulfilled all the desired requirements. However, several criteria validated the fact that the adaptive neuro-fuzzy inference systems (ANFIS) model results in better conditions and has a better ability to simulate. The mean square error (MSE) for artificial neural networks (ANN), ANFIS, and support vector regression (SVR) models was 459.22, 0.0418, and 651.68 respectively. After performing the sensitivity analysis (SA) an optimized ANFIS model was achieved with a MSE value of 0.003 and demonstrated that HT temperature is the most significant of these parameters, and this acts as a critical rule in training the data sets.


2020 ◽  
Vol 5 (19) ◽  
pp. 32-35
Author(s):  
Anand Vijay ◽  
Kailash Patidar ◽  
Manoj Yadav ◽  
Rishi Kushwah

In this paper an analytical survey on the role of machine learning algorithms in case of intrusion detection has been presented and discussed. This paper shows the analytical aspects in the development of efficient intrusion detection system (IDS). The related study for the development of this system has been presented in terms of computational methods. The discussed methods are data mining, artificial intelligence and machine learning. It has been discussed along with the attack parameters and attack types. This paper also elaborates the impact of different attack and handling mechanism based on the previous papers.


2021 ◽  
Vol 12 (4) ◽  
pp. 43
Author(s):  
Srikrishna Chintalapati

From retail banking to corporate banking, from property and casualty to personal lines, and from portfolio management to trade processing, the next wave of digital disruption in financial services has been unleashed by the concepts and applications of Artificial Intelligence (AI) and Machine Learning (ML). Together, AI and ML are undoubtedly creating one of the largest technological transformations the world has ever witnessed. Within the advanced streams of research in AI and ML, human intelligence blended with the cognitive reasoning of machines is finally out of the labs and into real-time applications. The Financial Services sector is one of the early adopters of this revolution and arguably much ahead of its leverage compared to other sectors. Built on the conceptual foundations of Innovation diffusion, and a contemporary perspective of enterprise customer life-cycle journey across the AI-value chain defined by McKinsey Global Institute (2017), the current study attempts to highlight the features and use-cases of early-adopters of this transformation. With the theoretical underpinning of technology adoption lifecycle, this paper is an earnest attempt to comment on how AI and ML have been significantly transforming the Financial Services market space from the lens of a domain practitioner. The findings of this study would be of particular relevance to the subject matter experts, Industry analysts, academicians, and researchers focussed on studying the impact of AI and ML in the financial services industry.


Sign in / Sign up

Export Citation Format

Share Document