scholarly journals Decision Making in the Tea Leaves Diseases Detection Using Mamdani Fuzzy Inference Method

Author(s):  
Arif Ridho Lubis ◽  
Santi Prayudani ◽  
Muharman Lubis ◽  
Al Khowarizmi

The tea plants (Camellia Sinensis) are small tree species that use leaves and leaf buds to produce tea harvested through a monoculture system. It is an agriculture practice to cultivate one types of crop or livestock, variety or breed on a farm annually. Moreover, the emergence of pests, pathogens and diseases cause serious damages to tea plants significantly to its productivity and quality to optimum worst. All parts of the tea plant such as leaves, stems, roots, flowers and fruits are exposed to these harm lead to loss of yield 7 until 10% per year. The intensity of these attacks vary greatly on particular climate, the degree slope and the plant material used. Therefore, this study analyzes tea leaves as a common part used in recipes to create unique taste and flavor in tea production, especially in agro-industry. The decision making method used is Fuzzy Mamdani Inference as one of model with functional hierarchy with initial input based on established criteria. Fuzzy logic will provide tolerance to the set of value, so that small changes will not result in significant category differences, only affect the membership level on the variable value. Previous method using probabilities have shown 78% tea leaves have been attacked by category C (Gray Blight) while using Mamdani indicated 86% of tea leaves have been infected. In this case, this result pointed out that Fuzzy Mamdani Inferences have more optimal result compare to the previous method.

2012 ◽  
Vol 610-613 ◽  
pp. 181-185 ◽  
Author(s):  
Xiao Hua Duan ◽  
Xiao Fei Hu ◽  
Fu Sheng Chen ◽  
Ze Yuan Deng

The effects of simulated acid rain and aluminum (Al) addition on growth and photosynthesis physiology of tea plants (Camellia sinensis L.) were studied with tea seedlings in a hydroculture experiment. Results showed that the growth of tea plant, chlorophyll content, and photosynthesis (Pn) of tea leaves were better in the treatments of suitable Al addition (10 mg/L and/or 20 mg/L) than the treatments without Al addition and higher Al addition (30 mg/L). The growth of tea plant increased with increasing acidity of acid rain, while the leaves of tea plant showed more chlorophyll content and higher Pn at the treatment of pH 4.0 than pH 5.0 and pH 3.0 acid solutions. The growth of tea plant, chlorophyll content and Pn were the best at the combined treatment of suitable Al addition (10~20 mg/L) and moderate acidity of acid rain (pH 4.0), while the slowest at the combined treatment of 30 mg/L Al and pH 3.0 acid rain. These results suggested that suitable Al and moderate acidity of acid rain are helpful to increase tea production by increasing photosynthesis capacity.


2015 ◽  
Vol 10 (5) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Wei-Wei Deng ◽  
Min Li ◽  
Chen-Chen Gu ◽  
Da-Xiang Li ◽  
Lin-Long Ma ◽  
...  

Caffeine, a purine alkaloid, is a major secondary metabolite in tea leaves. The demand for low caffeine tea is increasing in recent years, especially for health reasons. We report a novel grafted tea material with low caffeine content. The grafted tea plant had Camellia sinensis as scions and C. oleifera as stocks. The content of purine alkaloids was determined in the leaves of one-year-old grafted tea plants by HPLC. We also characterized caffeine synthase (CS), a key enzyme involved in caffeine biosynthesis in tea plants, at the expression level. The expression patterns of CS were examined in grafted and control leaves by Western blot, using a self-prepared polyclonal antibody with high specificity and sensitivity. The expression of related genes ( TCS1, tea caffeine synthase gene, GenBank accession No. AB031280; sAMS, SAM synthetase gene, AJ277206; TIDH, IMP dehydrogenase gene, EU106658) in the caffeine biosynthetic pathway was investigated by qRT-PCR. HPLC showed that the caffeine content was only 38% as compared with the non-grafted tea leaves. Immunoblotting analysis showed that CS protein decreased by half in the leaves of grafted tea plants. qRT-PCR revealed no significant changes in the expression of two genes in the upstream pathway ( sAMS and TIDH), while the expression of TCS1 was greatly decreased (50%). Taken together, these data revealed that the low caffeine content in the grafted tea leaves is due to low TCS1 expression and CS protein accumulation.


2018 ◽  
Vol 159 ◽  
pp. 02025 ◽  
Author(s):  
Eflita Yohana ◽  
Mohammad Endy Yulianto ◽  
Shofwan Bahar ◽  
Azza Alifa Muhammad ◽  
Novi Laura Indrayani

Tea plants in Indonesia are derived from Carmelia sinensis var. assamica which contain catechin in quite high amount compared with other countries tea plant. Green tea is made by inactivating the oxidase / phenolase enzyme that presents in the fresh tea leaf buds from tea garden, by using hot steam to prevent the oxidation of the catechins. Drying process to reduce the moisture of tea, one of the method is by utilizing the dry air from dehumidification process. Liquid desiccant made from 50% concentration of CaCl2, the temperature is lowered to 10 °C and sprayed into the air stream which contains water vapor by using a 0.2 mm spraying nozzle so that mass transfer and latent heat occur in the dehumidifier. The result of air dehumidification process used for drying tea leaves. The air is able to dry the tea leaves from the weight of 58 grams to 47 grams. Then the liquid desiccant dehumidification process will be streamed into the humidifier, where the liquid desiccant regeneration process will have change into the initial concentration. The result of air humidification process has an average absolute humidity rise of 0.07 g/kg. The liquid desiccant regeneration process that happened continuously reaching the saturation point at 280 minutes. It can be concluded that the process of dehumidification-humidification is a fairly effective method for drying the tea leaves.


2020 ◽  
Vol 21 (16) ◽  
pp. 5684 ◽  
Author(s):  
Xiaochen Zhou ◽  
Lanting Zeng ◽  
Yingjuan Chen ◽  
Xuewen Wang ◽  
Yinyin Liao ◽  
...  

In tea (Camellia sinensis) plants, polyphenols are the representative metabolites and play important roles during their growth. Among tea polyphenols, catechins are extensively studied, while very little attention has been paid to other polyphenols such as gallic acid (GA) that occur in tea leaves with relatively high content. In this study, GA was able to be transformed into methyl gallate (MG), suggesting that GA is not only a precursor of catechins, but also can be transformed into other metabolites in tea plants. GA content in tea leaves was higher than MG content—regardless of the cultivar, plucking month or leaf position. These two metabolites occurred with higher amounts in tender leaves. Using nonaqueous fractionation techniques, it was found that GA and MG were abundantly accumulated in peroxisome. In addition, GA and MG were found to have strong antifungal activity against two main tea plant diseases, Colletotrichum camelliae and Pseudopestalotiopsis camelliae-sinensis. The information will advance our understanding on formation and biologic functions of polyphenols in tea plants and also provide a good reference for studying in vivo occurrence of specialized metabolites in economic plants.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 915 ◽  
Author(s):  
Yingying Li ◽  
Qiuqiu Zhang ◽  
Lina Ou ◽  
Dezhong Ji ◽  
Tao Liu ◽  
...  

Cold stress caused by a low temperature is a significant threat to tea production. The application of chitosan oligosaccharide (COS) can alleviate the effect of low temperature stress on tea plants. However, how COS affects the cold stress signaling in tea plants is still unclear. In this study, we investigated the level of physiological indicators in tea leaves treated with COS, and then the molecular response to the cold stress of tea leaves treated with COS was analyzed by transcriptomics with RNA-Sequencing (RNA-Seq). The results show that the activity of superoxide dismutase (SOD) activity, peroxidase (POD) activity, content of chlorophyll and soluble sugar in tea leaves in COS-treated tea plant were significantly increased and that photosynthesis and carbon metabolism were enriched. Besides, our results suggest that COS may impact to the cold stress signaling via enhancing the photosynthesis and carbon process. Our research provides valuable information for the mechanisms of COS application in tea plants under cold stress.


Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2548-2558 ◽  
Author(s):  
Yuchun Wang ◽  
Fei Xiong ◽  
Qinhua Lu ◽  
Xinyuan Hao ◽  
Mengxia Zheng ◽  
...  

Several Pestalotiopsis-like species cause gray blight disease in tea plants, resulting in severe tea production losses. However, systematic and comprehensive research on the diversity, geographical distribution, and pathogenicity of pathogenic species associated with tea plants in China is limited. In this study, 168 Pestalotiopsis-like isolates were obtained from diseased tea plant leaves from 13 primary tea-producing provinces and cities in China. Based on a multilocus (internal transcribed spacer, translation elongation factor 1-α, and β-tubulin gene region) phylogenetic analysis coupled with an assessment of conidial characteristics, 20 Neopestalotiopsis unclassified isolates, seven Pestalotiopsis species, including two novel (Pestalotiopsis menhaiensis and Pestalotiopsis sichuanensis), four known (Pestalotiopsis camelliae, Pestalotiopsis chamaeropis, Pestalotiopsis kenyana, and Pestalotiopsis rhodomyrtus) and one indistinguishable species, and three Pseudopestalotiopsis species, including two known (Pseudopestalotiopsis camelliae-sinensis and Pseudopestalotiopsis chinensis) and one indistinguishable species, were identified. This study is the first to evaluate Pestalotiopsis chamaeropis on tea plants in China. The geographical distribution and pathogenicity tests showed Pseudopestalotiopsis camelliae-sinensis to be the dominant cause of gray blight of tea plants in China. In vitro antifungal assays demonstrated that theobromine not only derepressed mycelial growth of the 29 representative isolates but also increased their growth. Correlation analysis revealed a linear positive relationship between the mycelial growth rate and pathogenicity (P = 0.0148).


10.5219/1401 ◽  
2020 ◽  
Vol 14 ◽  
pp. 1020-1026
Author(s):  
Nataliia Platonova ◽  
Oksana Belous

The dynamics of guaiacol peroxidase and photosynthetic pigments in 3-leaf sprouts (flushes) of tea plants were studied. The presence of declines and peaks in the activity of the enzyme associated with the meteorological conditions of each month was noted. It is shown that there is a direct relationship between the increase in enzyme activity and hydrothermal factors. The most significant correlation was found between the activity of GPO in a 3-leaf tea flush and the amount of precipitation (r = 0.86). The highest activity of guaiacol peroxidase during the entire vegetation period is distinguished by the Sochi variety and form 582. The lowest activity was observed in forms 3823 and 2264, which indicates a low intensity of redox reactions in these plants in stressful situations. Determining the dynamics of the pigment complex revealed its dependence on hydrothermal factors. Studies have shown that precipitation is a significant factor affecting the pigment complex of tea plants. It was found that the largest amount of green pigments is synthesized by leaves at the beginning of active vegetation (May). The participation of the pigment apparatus in the adaptation of the tea plant is directly related to carotenoids, the increase in the number of carotenoids coincides with the period of drought. In the content of photosynthetic pigments and the activity of guaiacol peroxidase manifest genotypic features. The revealed patterns are common to all tea plants.


Author(s):  
Dikdik Krisnandi ◽  
Hilman F. Pardede ◽  
R. Sandra Yuwana ◽  
Vicky Zilvan ◽  
Ana Heryana ◽  
...  

Plant diseases can cause a significant decrease in tea crop production. Early disease detection can help to minimize the loss. For tea plants, experts can identify the diseases by visual inspection on the leaves. However, providing experts to deal with disease identification may be very costly. The machine learning technology can be implemented to provide automatic plant disease detection. Currently, deep learning is state-of-the-art for object identification in computer vision. In this study, the researchers propose the Convolutional Neural Network (CNN) for tea disease detections. The researchers focus on the implementation of concatenated CNN, namely GoogleNet, Xception, and Inception-ResNet-v2, for this task. About 4727 images of tea leaves are collected, comprising of three types of diseases that commonly occur in Indonesia and a healthy class. The experimental results confirm the effectiveness of concatenated CNN for tea disease detections. The accuracy of 89.64% is achieved.


Kultivasi ◽  
2020 ◽  
Vol 19 (3) ◽  
Author(s):  
Intan Ratna Dewi Anjarsari ◽  
Mira Ariyanti ◽  
Santi Rosniawaty

SariTeh merupakan salah satu komoditas perkebunan yang memegang peranan cukup penting dalam perekonomian Indonesia, yaitu sebagai sumber pendapatan dan devisa serta penyedia lapangan kerja bagi masyarakat. Teh di Indonesia sebagian besar berasal dari Jawa Barat dengan kontribusi produksi (rata-rata lima tahun terakhir) sebesar 66,93%, sedangkan provinsi lainnya hanya berkontribusi kurang dari 10%. Produksi teh di Indonesia padatahun 2017 sebesar 146,17 ton, selalu berfluktuasi dari tahun ke tahun, hingga diperkirakan tahun 2021 menurun dengan produksi sebesar 141,63 ton. Seperti halnya komoditas perkebunan yang lain, tanaman teh dalam perkembangannya mengalami fluktuasi produksi pucuk sebagai bahan baku olahan teh. Produktivitas teh sangat dipengaruhi oleh faktor internal (tanaman), maupun eksternal (lingkungan) .  Pengembangan tanaman teh saat ini dan masa mendatang akan dihadapkan pada berbagai kendala, diantaranya kondisi tanaman yang semakin tua sehingga perlu dimaksimalkan proses metabolismenya melalui pemeliharaan tanaman teh. Ancaman perubahan iklim berdampak besar  pada pertumbuhan dan hasil tanaman teh. Peningkatan suhu dan penurunan curah hujan akibat pemanasan global dapat mempengaruhi produktivitas dan keberlanjutan perkebunan teh di masa depan. Ekofisiologi pada tanaman teh bisa dioptimalkan dengan memaksimalkan beberapa faktor internal dan eksternal yang berpengaruh terhadap pertumbuhan, kuantitas, dan kualitas teh.Kata Kunci :  ekofisiologi,  pertumbuhan, produktivitas, perubahan iklim AbstractTea is one of the plantation commodities that plays an important role in the Indonesian economy, that is a source of income and foreign exchange and a provider of employment for the community. Tea in Indonesia is mostly from West Java with a production contribution (an average of the last five years) of 66.93% while other provinces only contribute less than 10%. Tea production in Indonesia in 2017 amounted to 146.17 tons, fluctuated year to year, until it was estimated that in 2021 tea production will decrease to 141.63 tons. Like other plantation commodities, in its development, the tea plant fluctuates in shoot production as a raw material for processing tea. Tea productivity is strongly influenced by internal (plant) and external (environmental) factors. The development of tea plants at present and in the future will be faced with various problems. The condition of the older plants needs to be maximized through the maintenance of tea plants. The threat of climate change has a significant impact on the growth and yield of the tea plant. Temperature increase and rainfall decrease due to global warming can affect the productivity and sustainability of tea plantations in the future. The ecophysiology of the tea plant can be optimized by maximizing several internal and external factors that affect the growth, quantity and quality of tea.Key words : ecophysiology, growth, productivity, climate change


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Cuinan Yue ◽  
Zhihui Wang ◽  
Puxiang Yang

Abstract Background Light is the ultimate energy source of plant photosynthesis, which has an important impact on the growth, development, physiology and biochemistry of tea plant. Photosensitive etiolated tea plant belongs to a kind of colored leaf plant, which is a physiological response to light intensity. Compared with conventional green bud and leaf of tea plant, the accumulation of pigment compounds (chlorophyll and carotenoids, etc.) closely related to a series of reactions of photosynthesis in photosensitive etiolated tea plant is reduced, resulting in the difference of leaf color of tea. This specific tea resource has high application value, among which high amino acid is one of its advantages. It can be used to process high-quality green tea with delicious taste and attractive aroma, which has been widely attention. The mechanism of the color presentation of the etiolated mutant tea leaves has been given a high topic and attention, especially, what changes have taken place in the pigment compounds of tea leaves caused by light, which makes the leaves so yellow. At present, there have been a lot of research and reports. Purpose of the review We describe the metabolism and differential accumulation of key pigment compounds affecting the leaf color of photosensitive etiolated tea that are triggered by light, and discuss the different metabolism and key regulatory sites of these pigments in different light environments in order to understand the “discoloration” matrix and mechanism of etiolated tea resources, answer the scientific question between leaf color and light. It provides an important strategy for artificial intervention of discoloration of colored tea plant. Conclusion The differential accumulation of pigment compounds in tea plant can be induced phytochrome in response to the change of light signal. The synthesis of chlorophyll in photoetiolated tea plants is hindered by strong light, among which, the sites regulated by coproporphyrinogen III oxidase and chlorophyllide a oxidase is sensitive to light and can be inhibited by strong light, resulting in the aggravation of leaf etiolation. The phenomenon can be disappeared or weakened by shading or reducing light intensity, and the leaf color is greenish, but the increase of chlorophyll-b accumulation is more than that of chlorophyll-a. The synthesis of carotenoids is inhibited strong light, and high the accumulation of carotenoids is reduced by shading. Most of the genes regulating carotenoids are up-regulated by moderate shading and down-regulated by excessive shading. Therefore, the accumulation of these two types of pigments in photosensitive etiolated tea plants is closely related to the light environment, and the leaf color phenotype shape of photosensitive etiolated tea plants can be changed by different light conditions, which provides an important strategy for the production and management of tea plant.


Sign in / Sign up

Export Citation Format

Share Document