scholarly journals Response to the Cold Stress Signaling of the Tea Plant (Camellia sinensis) Elicited by Chitosan Oligosaccharide

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 915 ◽  
Author(s):  
Yingying Li ◽  
Qiuqiu Zhang ◽  
Lina Ou ◽  
Dezhong Ji ◽  
Tao Liu ◽  
...  

Cold stress caused by a low temperature is a significant threat to tea production. The application of chitosan oligosaccharide (COS) can alleviate the effect of low temperature stress on tea plants. However, how COS affects the cold stress signaling in tea plants is still unclear. In this study, we investigated the level of physiological indicators in tea leaves treated with COS, and then the molecular response to the cold stress of tea leaves treated with COS was analyzed by transcriptomics with RNA-Sequencing (RNA-Seq). The results show that the activity of superoxide dismutase (SOD) activity, peroxidase (POD) activity, content of chlorophyll and soluble sugar in tea leaves in COS-treated tea plant were significantly increased and that photosynthesis and carbon metabolism were enriched. Besides, our results suggest that COS may impact to the cold stress signaling via enhancing the photosynthesis and carbon process. Our research provides valuable information for the mechanisms of COS application in tea plants under cold stress.

2015 ◽  
Vol 10 (5) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Wei-Wei Deng ◽  
Min Li ◽  
Chen-Chen Gu ◽  
Da-Xiang Li ◽  
Lin-Long Ma ◽  
...  

Caffeine, a purine alkaloid, is a major secondary metabolite in tea leaves. The demand for low caffeine tea is increasing in recent years, especially for health reasons. We report a novel grafted tea material with low caffeine content. The grafted tea plant had Camellia sinensis as scions and C. oleifera as stocks. The content of purine alkaloids was determined in the leaves of one-year-old grafted tea plants by HPLC. We also characterized caffeine synthase (CS), a key enzyme involved in caffeine biosynthesis in tea plants, at the expression level. The expression patterns of CS were examined in grafted and control leaves by Western blot, using a self-prepared polyclonal antibody with high specificity and sensitivity. The expression of related genes ( TCS1, tea caffeine synthase gene, GenBank accession No. AB031280; sAMS, SAM synthetase gene, AJ277206; TIDH, IMP dehydrogenase gene, EU106658) in the caffeine biosynthetic pathway was investigated by qRT-PCR. HPLC showed that the caffeine content was only 38% as compared with the non-grafted tea leaves. Immunoblotting analysis showed that CS protein decreased by half in the leaves of grafted tea plants. qRT-PCR revealed no significant changes in the expression of two genes in the upstream pathway ( sAMS and TIDH), while the expression of TCS1 was greatly decreased (50%). Taken together, these data revealed that the low caffeine content in the grafted tea leaves is due to low TCS1 expression and CS protein accumulation.


2018 ◽  
Vol 159 ◽  
pp. 02025 ◽  
Author(s):  
Eflita Yohana ◽  
Mohammad Endy Yulianto ◽  
Shofwan Bahar ◽  
Azza Alifa Muhammad ◽  
Novi Laura Indrayani

Tea plants in Indonesia are derived from Carmelia sinensis var. assamica which contain catechin in quite high amount compared with other countries tea plant. Green tea is made by inactivating the oxidase / phenolase enzyme that presents in the fresh tea leaf buds from tea garden, by using hot steam to prevent the oxidation of the catechins. Drying process to reduce the moisture of tea, one of the method is by utilizing the dry air from dehumidification process. Liquid desiccant made from 50% concentration of CaCl2, the temperature is lowered to 10 °C and sprayed into the air stream which contains water vapor by using a 0.2 mm spraying nozzle so that mass transfer and latent heat occur in the dehumidifier. The result of air dehumidification process used for drying tea leaves. The air is able to dry the tea leaves from the weight of 58 grams to 47 grams. Then the liquid desiccant dehumidification process will be streamed into the humidifier, where the liquid desiccant regeneration process will have change into the initial concentration. The result of air humidification process has an average absolute humidity rise of 0.07 g/kg. The liquid desiccant regeneration process that happened continuously reaching the saturation point at 280 minutes. It can be concluded that the process of dehumidification-humidification is a fairly effective method for drying the tea leaves.


2020 ◽  
Vol 21 (16) ◽  
pp. 5684 ◽  
Author(s):  
Xiaochen Zhou ◽  
Lanting Zeng ◽  
Yingjuan Chen ◽  
Xuewen Wang ◽  
Yinyin Liao ◽  
...  

In tea (Camellia sinensis) plants, polyphenols are the representative metabolites and play important roles during their growth. Among tea polyphenols, catechins are extensively studied, while very little attention has been paid to other polyphenols such as gallic acid (GA) that occur in tea leaves with relatively high content. In this study, GA was able to be transformed into methyl gallate (MG), suggesting that GA is not only a precursor of catechins, but also can be transformed into other metabolites in tea plants. GA content in tea leaves was higher than MG content—regardless of the cultivar, plucking month or leaf position. These two metabolites occurred with higher amounts in tender leaves. Using nonaqueous fractionation techniques, it was found that GA and MG were abundantly accumulated in peroxisome. In addition, GA and MG were found to have strong antifungal activity against two main tea plant diseases, Colletotrichum camelliae and Pseudopestalotiopsis camelliae-sinensis. The information will advance our understanding on formation and biologic functions of polyphenols in tea plants and also provide a good reference for studying in vivo occurrence of specialized metabolites in economic plants.


2012 ◽  
Vol 610-613 ◽  
pp. 181-185 ◽  
Author(s):  
Xiao Hua Duan ◽  
Xiao Fei Hu ◽  
Fu Sheng Chen ◽  
Ze Yuan Deng

The effects of simulated acid rain and aluminum (Al) addition on growth and photosynthesis physiology of tea plants (Camellia sinensis L.) were studied with tea seedlings in a hydroculture experiment. Results showed that the growth of tea plant, chlorophyll content, and photosynthesis (Pn) of tea leaves were better in the treatments of suitable Al addition (10 mg/L and/or 20 mg/L) than the treatments without Al addition and higher Al addition (30 mg/L). The growth of tea plant increased with increasing acidity of acid rain, while the leaves of tea plant showed more chlorophyll content and higher Pn at the treatment of pH 4.0 than pH 5.0 and pH 3.0 acid solutions. The growth of tea plant, chlorophyll content and Pn were the best at the combined treatment of suitable Al addition (10~20 mg/L) and moderate acidity of acid rain (pH 4.0), while the slowest at the combined treatment of 30 mg/L Al and pH 3.0 acid rain. These results suggested that suitable Al and moderate acidity of acid rain are helpful to increase tea production by increasing photosynthesis capacity.


Author(s):  
Arif Ridho Lubis ◽  
Santi Prayudani ◽  
Muharman Lubis ◽  
Al Khowarizmi

The tea plants (Camellia Sinensis) are small tree species that use leaves and leaf buds to produce tea harvested through a monoculture system. It is an agriculture practice to cultivate one types of crop or livestock, variety or breed on a farm annually. Moreover, the emergence of pests, pathogens and diseases cause serious damages to tea plants significantly to its productivity and quality to optimum worst. All parts of the tea plant such as leaves, stems, roots, flowers and fruits are exposed to these harm lead to loss of yield 7 until 10% per year. The intensity of these attacks vary greatly on particular climate, the degree slope and the plant material used. Therefore, this study analyzes tea leaves as a common part used in recipes to create unique taste and flavor in tea production, especially in agro-industry. The decision making method used is Fuzzy Mamdani Inference as one of model with functional hierarchy with initial input based on established criteria. Fuzzy logic will provide tolerance to the set of value, so that small changes will not result in significant category differences, only affect the membership level on the variable value. Previous method using probabilities have shown 78% tea leaves have been attacked by category C (Gray Blight) while using Mamdani indicated 86% of tea leaves have been infected. In this case, this result pointed out that Fuzzy Mamdani Inferences have more optimal result compare to the previous method.


2019 ◽  
Vol 20 (20) ◽  
pp. 5137 ◽  
Author(s):  
Pengjie Wang ◽  
Xuejin Chen ◽  
Yongchun Guo ◽  
Yucheng Zheng ◽  
Chuan Yue ◽  
...  

C-repeat binding factors (CBFs) are key signaling genes that can be rapidly induced by cold and bind to the C-repeat/dehydration-responsive motif (CRT/DRE) in the promoter region of the downstream cold-responsive (COR) genes, which play a vital role in the plant response to low temperature. However, the CBF family in tea plants has not yet been elucidated, and the possible target genes regulated by this family under low temperature are still unclear. In this study, we identified five CsCBF family genes in the tea plant genome and analyzed their phylogenetic tree, conserved domains and motifs, and cis-elements. These results indicate that CsCBF3 may be unique in the CsCBF family. This is further supported by our findings from the low-temperature treatment: all the CsCBF genes except CsCBF3 were significantly induced after treatment at 4 °C. The expression profiles of eight tea plant tissues showed that CsCBFs were mainly expressed in winter mature leaves, roots and fruits. Furthermore, 685 potential target genes were identified by transcriptome data and CRT/DRE element information. These target genes play a functional role under the low temperatures of winter through multiple pathways, including carbohydrate metabolism, lipid metabolism, cell wall modification, circadian rhythm, calcium signaling, transcriptional cascade, and hormone signaling pathways. Our findings will further the understanding of the stress regulatory network of CsCBFs in tea plants.


10.5219/1401 ◽  
2020 ◽  
Vol 14 ◽  
pp. 1020-1026
Author(s):  
Nataliia Platonova ◽  
Oksana Belous

The dynamics of guaiacol peroxidase and photosynthetic pigments in 3-leaf sprouts (flushes) of tea plants were studied. The presence of declines and peaks in the activity of the enzyme associated with the meteorological conditions of each month was noted. It is shown that there is a direct relationship between the increase in enzyme activity and hydrothermal factors. The most significant correlation was found between the activity of GPO in a 3-leaf tea flush and the amount of precipitation (r = 0.86). The highest activity of guaiacol peroxidase during the entire vegetation period is distinguished by the Sochi variety and form 582. The lowest activity was observed in forms 3823 and 2264, which indicates a low intensity of redox reactions in these plants in stressful situations. Determining the dynamics of the pigment complex revealed its dependence on hydrothermal factors. Studies have shown that precipitation is a significant factor affecting the pigment complex of tea plants. It was found that the largest amount of green pigments is synthesized by leaves at the beginning of active vegetation (May). The participation of the pigment apparatus in the adaptation of the tea plant is directly related to carotenoids, the increase in the number of carotenoids coincides with the period of drought. In the content of photosynthetic pigments and the activity of guaiacol peroxidase manifest genotypic features. The revealed patterns are common to all tea plants.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 410
Author(s):  
Yingzi Wang ◽  
Qin Yu ◽  
Yinhua Li ◽  
Juan Li ◽  
Jinhua Chen ◽  
...  

Tea [Camellia sinensis (L.)] plants are important economic crop in China. Chilling stress and freezing damages have seriously affected the quality of tea products that have been already regarded as the main restricting factors to industry’s development. Nitric oxide (NO) plays a crucial role in resistance of abiotic stresses. An experiment was conducted in an artificial climate chamber to study the effect of NO on tea plants grown under chilling stress (–2 °C) for 0, 6, 24, 48, and 72 h. Foliar application of sodium nitroprusside (SNP) at a rate of 500 μmol·L−1 was used as NO donor. The experiment contained two factors: the first was the foliar application with SNP or distilled water, and the scond one was the chilling (–2 °C) exposure time (0, 6, 24, 48, and 72 h). The effects of NO on membrane lipid peroxidation, osmotic adjustment substances, and antioxidant activity under cold stress were studied. In addition, the gene expression of CsICE1 and CsCBF1 in respond to NO addition were also investigated using real-time polymerase chain reaction (RT-PCR). The results show that foliar addition of NO (500 μmol·L−1 of SNP) reduce the relative conductivity of tea leaves, inhibits the elevated malondialdehyde content, promotes the accumulation of proline, soluble protein and sugar, and increases the superoxide dismutase, catalase activities, thereby alleviates the damage of cold stress on tea leaves. The CsICE1 expression in 500 μM SNP treatment was peaked at 24 h of low temperature stress, while it did not express at normal temperature. Therefore, the current study is considered a good scientific material in understanding how tea plants sense and defense the chilling stress and that plays an important role to improve the level of production and economic benefits. It is also provided significant theory bas to control chilling stress in tea plants.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 68
Author(s):  
Lina Ou ◽  
Qiuqiu Zhang ◽  
Dezhong Ji ◽  
Yingying Li ◽  
Xia Zhou ◽  
...  

Chitosan oligosaccharides (COS) has been abundantly studied for its application on regulating plant growth of many horticultural and agricultural crops. We presented here the effect of COS on tea plant growth and yield by physiological and transcriptomic checking. The results showed that COS treatment can enhance the antioxidant activity of superoxide dismutase (SOD) and peroxidase (POD) and increase the content of chlorophyll and soluble sugar in tea plants. The field trail results show that COS treatment can increase tea buds’ density by 13.81–23.16%, the weight of 100 buds by 15.94–18.15%, and the yield by 14.22–21.08%. Transcriptome analysis found 5409 COS-responsive differentially expressed genes (DEGs), including 3149 up-regulated and 2260 down-regulated genes, and concluded the possible metabolism pathway that responsible for COS promoting tea plant growth. Our results provided fundamental information for better understanding the molecular mechanisms for COS’s acting on tea plant growth and yield promotion and offer academic support for its practical application in tea plant.


Author(s):  
Dikdik Krisnandi ◽  
Hilman F. Pardede ◽  
R. Sandra Yuwana ◽  
Vicky Zilvan ◽  
Ana Heryana ◽  
...  

Plant diseases can cause a significant decrease in tea crop production. Early disease detection can help to minimize the loss. For tea plants, experts can identify the diseases by visual inspection on the leaves. However, providing experts to deal with disease identification may be very costly. The machine learning technology can be implemented to provide automatic plant disease detection. Currently, deep learning is state-of-the-art for object identification in computer vision. In this study, the researchers propose the Convolutional Neural Network (CNN) for tea disease detections. The researchers focus on the implementation of concatenated CNN, namely GoogleNet, Xception, and Inception-ResNet-v2, for this task. About 4727 images of tea leaves are collected, comprising of three types of diseases that commonly occur in Indonesia and a healthy class. The experimental results confirm the effectiveness of concatenated CNN for tea disease detections. The accuracy of 89.64% is achieved.


Sign in / Sign up

Export Citation Format

Share Document