Hardware Implementation of Solar Based Boost to SEPIC Converter Fed Nine Level Inverter System

Author(s):  
D. Jasmine ◽  
M. Gopinath

Multi level inverters are widely used in high power applications because of low harmonic distortion. This paper deals with the simulation and implementation of PV based boost to SEPIC converter with multilevel inverter. The output of PV system is stepped up using boost to sepic converter and it is converted into AC using a multilevel inverter. The simulation and experimental results with the R load is presented in this paper. The FFT analysis is done and the THD values are compared. Boost to SEPIC converter is proposed to step up the voltage to the required value. The experimental results are compared with the simulation results. The results indicate that nine level inverter system has better performance than seven level inverter system.

2021 ◽  
Vol 17 (1) ◽  
pp. 1-13
Author(s):  
Adala Abdali ◽  
Ali Abdulabbas ◽  
Habeeb Nekad

The multilevel inverter is attracting the specialist in medium and high voltage applications, among its types, the cascade H bridge Multi-Level Inverter (MLI), commonly used for high power and high voltage applications. The main advantage of the conventional cascade (MLI) is generated a large number of output voltage levels but it demands a large number of components that produce complexity in the control circuit, and high cost. Along these lines, this paper presents a brief about the non-conventional cascade multilevel topologies that can produce a high number of output voltage levels with the least components. The non-conventional cascade (MLI) in this paper was built to reduce the number of switches, simplify the circuit configuration, uncomplicated control, and minimize the system cost. Besides, it reduces THD and increases efficiency. Two topologies of non-conventional cascade MLI three phase, the Nine level and Seventeen level are presented. The PWM technique is used to control the switches. The simulation results show a better performance for both topologies. THD, the power loss and the efficiency of the two topologies are calculated and drawn to the different values of the Modulation index (ma).


Author(s):  
Hatef Firouzkouhi

A new concept in control of cascaded H-Bridge multi-level inverters is proposed in this paper. According to this concept, switching angles are considered to be independent from the fundamental voltage. A polynomial term is presented to show the relation between switching angles and DC voltages. Based on this concept, Total Harmonic Distortion (THD) calculations are updated and proved to be independent from the fundamental voltage. Thus, once calculated for minimum THD, the switching pattern can be used for any required level of output voltage. To examine the effectiveness of the proposed method, it is applied in control of an eleven level inverter. The simulation results are demonstrated and verified through experiments with a setup controlled by Xilinx SPARTAN3 family FPGA (XC3S400-PQG208).


Author(s):  
Chinnapettai Ramalingam Balamurugan ◽  
S.P. Natarajan ◽  
T.S. Anandhi ◽  
R. Bensaraj

<p class="JESTECAbstract">This paper presents the comparison of various multicarrier Pulse Width Modulation (PWM) techniques for the Cascaded Hybrid Multi Level Inverter (CHBMLI). Due to switch combination redundancies, there are certain degrees of freedom to generate the five level AC output voltage. This paper presents the use of Control Freedom Degree (CFD) combination. The effectiveness of the PWM strategies developed using CFD are demonstrated by simulation and experimentation.  The simulation results indicate that the chosen five level inverter triggered by the developed Phase Disposition(PD), Phase Opposition and Disposition(POD), Alternate Phase Opposition and Disposition (APOD), Carrier Overlapping (CO), Phase Shift (PS) and Variable Frequency (VF)<strong> </strong>PWM strategies developed are implemented in real time using FPGA. The simulation and experimental outputs closely match with each other validating the strategies presented.</p>


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1948
Author(s):  
Mohammad Wasiq ◽  
Adil Sarwar ◽  
Zeeshan Sarwer ◽  
Mohd Tariq ◽  
Shafiq Ahmad ◽  
...  

A reduced switching components step-up multilevel inverter (RSCS-MLI) is presented in the paper. The basic circuit of the proposed MLI can produce 11 levels in the output voltage with a reduced number of switching components. The other features of the proposed circuit include a low value of voltage stresses and the inherent generation of the voltage levels pertaining to the negative half without the requirement of an H-bridge. Fundamental frequency switching technique, also known as Nearest Level Control (NLC) technique, is implemented in the proposed topology for generating the switching signals. The experimental total harmonic distortion (THD) in the output voltage comes out to be 9.4% for modulation index equal to 1. Based on different parameters, a comparative study has been shown in the paper, which makes the claim of the proposed MLI stronger. An experimental setup is prepared to carry out the hardware implementation of the proposed structure and monitor its performance under dynamic load conditions, which is also used to verify the simulation results. Power loss analysis, carried out by using PLECS software, helps us to gain insight into different losses occurring while operating the inverter. The different results are explained and analyzed in the paper.


In high and medium AC power applications, multilevel inverters (MLI) have significant importance in modern days. The architecture of multi-level cascaded type inverter is preferred because of reduced harmonic distortion, high quality AC output power, least switching loss and minimum switching stress. The existing method uses 8-number of switches to generate 11-level AC voltage. A new design of 15-level multilevel inverter with 6-switching devices is proposed in this paper and DC supply devices are similar to existing method, which outcomes in less switching loss, less complexity of circuit design and less cost. The DC supply for multilevel inverter is taken from solar panel with MPPT technique. The new 6-switch multilevel inverter circuit topology, switching pattern and gate pulse making is explained in this paper. The fast Fourier transform (FFT) analysis of the outputs of 11-level and 15-level of multilevel inverters are related. The new 6-switch 15 level cascaded type inverter circuit has been intended and modeled by using MATLAB software Simulink tool. The simulation outcomes are displayed with less total harmonic distortion and reduced switching loss has been achieved.


2021 ◽  
Vol 13 (2) ◽  
pp. 505
Author(s):  
Sumaya Jahan ◽  
Shuvra Prokash Biswas ◽  
Md. Kamal Hosain ◽  
Md. Rabiul Islam ◽  
Safa Haq ◽  
...  

The use of different control techniques has become very popular for controlling the performance of grid-connected photovoltaic (PV) systems. Although the proportional-integral (PI) control technique is very popular, there are some difficulties such as less stability, slow dynamic response, low reference tracking capability, and lower output power quality in solar PV applications. In this paper, a robust, fast, and dynamic proportional-integral resonance controller with a harmonic and lead compensator (PIR + HC + LC) is proposed to control the current of a 15-level neutral-point-clamped (NPC) multilevel inverter. The proposed controlled is basically a proportional-integral resonance (PIR) controller with the feedback of a harmonic compensator and a lead compensator. The performance of the proposed controller is analyzed in a MATLAB/Simulink environment. The simulation result represents admirable performance in terms of stability, sudden load change response, fault handling capability, reference tracking capability, and total harmonic distortion (THD) than those of the existing controllers. The responses of the inverter and grid outlets under different conditions are also analyzed. The harmonic compensator decreases the lower order harmonics of grid voltage and current, and the lead compensator provides the phase lead. It is expected that the proposed controller is a dynamic aspirant in the grid-connected PV system.


Author(s):  
Trong-Thang Nguyen

<p>In this study, the author analyzes the advantages and disadvantages of multi-level inverter compared to the traditional two-level inverter and then chose the suitable inverter. Specifically, the author analyzes and designs the three-level inverter, including the power circuit design and control circuit design. All designs are verified through the numerical simulation on Matlab. The results show that even though the three-level inverter has a low number of switches (only 12 switches), but the quality is very good: the total harmonic distortion is small; the output voltage always follows the reference voltage.</p>


2017 ◽  
Vol 16 (1) ◽  
pp. 37-46
Author(s):  
Mahir Mahdee ◽  
Chowdhury Mohammad Samir ◽  
Sunzidur Rahman ◽  
Md. Shabuj Hossain ◽  
Ahmed Mortuza Saleque ◽  
...  

This paper presents a relatively new concept for the design and implementation of a grid-tie inverter for photo voltaic (PV) systems. The proposed method will eliminate the uses of battery pack hence overall cost of any PV project will be significantly reduced. As the output of any PV array varies with the variation of solar irradiance hence a boost converter with PID regulated variable duty cycle has been used to keep a constant input to the inverter. Multilevel inverter topology has been proposed for utility grid connectivity. The proposed design is simulated in MATLAB/Simulink and a prototype is also implemented to verify the simulation results. The controllers are implemented in Arduino microcontroller board.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1149-1154

A inverter is basically a device that usually converts DC to AC voltage without causing any power loss, applicable to only low to medium voltage applications. But in case of medium to high power applications, it has demerits like high switching losses, reduced cost and low efficiency. To overcome these demerits a Multilevel inverter applicable to high voltage and high-power applications which have low total harmonic distortion (THD) is introduced. This paper is mainly focused on seven-level inverter with five switches and four dc sources. with low total harmonic distortion, less switching loss without adding any complexity to the circuit. The switching topology is integrated with various SPWM techniques like Phase Disposition (PD), Phase Opposition Disposition (POD) and Anti Phase Opposition Disposition (APOD). For better performance of the inverter above three PWM techniques will be compared and analyzed to find the low THD configuration. The simulation of switching topology is done by MATLAB/Simulink.


2014 ◽  
Vol 541-542 ◽  
pp. 574-578
Author(s):  
Hui Yuan Li ◽  
Hai Ji ◽  
Xu Qing Qin ◽  
Chao Wu ◽  
Yun Hu Wang

This paper aims at the requirement of tracklayer gearing controlling racing power loss (for short racing loss), analyzed mechanism of generating racing loss of a high-power hydraulic retarder. By adding different number of baffle-plate equipment, racing loss was reduced. Using CFD technology, this paper studied contrastively the racing loss of hydraulic retarder in different condition, and compared with experiment result. The result indicated that the racing loss reduced obviously after fixing baffle-plate equipment, and the CFD simulation results agree well with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document