scholarly journals Single Cell RNA Sequencing in Atherosclerosis Research

2020 ◽  
Vol 126 (9) ◽  
pp. 1112-1126 ◽  
Author(s):  
Jesse W. Williams ◽  
Holger Winkels ◽  
Christopher P. Durant ◽  
Konstantin Zaitsev ◽  
Yanal Ghosheh ◽  
...  

Technological advances in characterizing molecular heterogeneity at the single cell level have ushered in a deeper understanding of the biological diversity of cells present in tissues including atherosclerotic plaques. New subsets of cells have been discovered among cell types previously considered homogenous. The commercial availability of systems to obtain transcriptomes and matching surface phenotypes from thousands of single cells is rapidly changing our understanding of cell types and lineage identity. Emerging methods to infer cellular functions are beginning to shed new light on the interplay of components involved in multifaceted disease responses, like atherosclerosis. Here, we provide a technical guide for design, implementation, assembly, and interpretations of current single cell transcriptomics approaches from the perspective of employing these tools for advancing cardiovascular disease research.

Author(s):  
Jingyi Jessica Li

Abstract Single-cell RNA sequencing (scRNA-seq) is a burgeoning field where experimental techniques and computational methods have been under rapid evolution in the past six years. These technological advances have allowed biomedical researchers to identify new cell types, delineate cell sub-populations, and infer cell differentiation trajectories in various tissue samples. Among the important features extractable from scRNA-seq data, the predominant ones are individual genes’ expression levels in single cells. Most analyses require a preprocessing step that converts a scRNA-seq dataset into a count matrix, where rows correspond to cells (or genes), columns correspond to genes (or cells), and entries are counts, i.e. a count is the number of sequenced reads or uniquely mapped identifiers (UMIs) mapped to a gene in a cell. Single-cell count matrices are highly sparse; for example, a typical matrix constructed from a droplet-based dataset may have >90% of counts as zeros.


2016 ◽  
Author(s):  
Christof Angermueller ◽  
Heather J. Lee ◽  
Wolf Reik ◽  
Oliver Stegle

AbstractRecent technological advances have enabled assaying DNA methylation at single-cell resolution. Current protocols are limited by incomplete CpG coverage and hence methods to predict missing methylation states are critical to enable genome-wide analyses. Here, we report DeepCpG, a computational approach based on deep neural networks to predict DNA methylation states from DNA sequence and incomplete methylation profiles in single cells. We evaluated DeepCpG on single-cell methylation data from five cell types generated using alternative sequencing protocols, finding that DeepCpG yields substantially more accurate predictions than previous methods. Additionally, we show that the parameters of our model can be interpreted, thereby providing insights into the effect of sequence composition on methylation variability.


2021 ◽  
Author(s):  
Qing Xie ◽  
Chengong Han ◽  
Victor Jin ◽  
Shili Lin

Single cell Hi-C techniques enable one to study cell to cell variability in chromatin interactions. However, single cell Hi-C (scHi-C) data suffer severely from sparsity, that is, the existence of excess zeros due to insufficient sequencing depth. Complicate things further is the fact that not all zeros are created equal, as some are due to loci truly not interacting because of the underlying biological mechanism (structural zeros), whereas others are indeed due to insufficient sequencing depth (sampling zeros), especially for loci that interact infrequently. Differentiating between structural zeros and sampling zeros is important since correct inference would improve downstream analyses such as clustering and discovery of subtypes. Nevertheless, distinguishing between these two types of zeros has received little attention in the single cell Hi-C literature, where the issue of sparsity has been addressed mainly as a data quality improvement problem. To fill this gap, in this paper, we propose HiCImpute, a Bayesian hierarchy model that goes beyond data quality improvement by also identifying observed zeros that are in fact structural zeros. HiCImpute takes spatial dependencies of scHi-C 2D data structure into account while also borrowing information from similar single cells and bulk data, when such are available. Through an extensive set of analyses of synthetic and real data, we demonstrate the ability of HiCImpute for identifying structural zeros with high sensitivity, and for accurate imputation of dropout values in sampling zeros. Downstream analyses using data improved from HiCImpute yielded much more accurate clustering of cell types compared to using observed data or data improved by several comparison methods. Most significantly, HiCImpute-improved data has led to the identification of subtypes within each of the excitatory neuronal cells of L4 and L5 in the prefrontal cortex.


2020 ◽  
Author(s):  
Feng Tian ◽  
Fan Zhou ◽  
Xiang Li ◽  
Wenping Ma ◽  
Honggui Wu ◽  
...  

SummaryBy circumventing cellular heterogeneity, single cell omics have now been widely utilized for cell typing in human tissues, culminating with the undertaking of human cell atlas aimed at characterizing all human cell types. However, more important are the probing of gene regulatory networks, underlying chromatin architecture and critical transcription factors for each cell type. Here we report the Genomic Architecture of Cells in Tissues (GeACT), a comprehensive genomic data base that collectively address the above needs with the goal of understanding the functional genome in action. GeACT was made possible by our novel single-cell RNA-seq (MALBAC-DT) and ATAC-seq (METATAC) methods of high detectability and precision. We exemplified GeACT by first studying representative organs in human mid-gestation fetus. In particular, correlated gene modules (CGMs) are observed and found to be cell-type-dependent. We linked gene expression profiles to the underlying chromatin states, and found the key transcription factors for representative CGMs.HighlightsGenomic Architecture of Cells in Tissues (GeACT) data for human mid-gestation fetusDetermining correlated gene modules (CGMs) in different cell types by MALBAC-DTMeasuring chromatin open regions in single cells with high detectability by METATACIntegrating transcriptomics and chromatin accessibility to reveal key TFs for a CGM


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Elliott Swanson ◽  
Cara Lord ◽  
Julian Reading ◽  
Alexander T Heubeck ◽  
Palak C Genge ◽  
...  

Single-cell measurements of cellular characteristics have been instrumental in understanding the heterogeneous pathways that drive differentiation, cellular responses to signals, and human disease. Recent advances have allowed paired capture of protein abundance and transcriptomic state, but a lack of epigenetic information in these assays has left a missing link to gene regulation. Using the heterogeneous mixture of cells in human peripheral blood as a test case, we developed a novel scATAC-seq workflow that increases signal-to-noise and allows paired measurement of cell surface markers and chromatin accessibility: integrated cellular indexing of chromatin landscape and epitopes, called ICICLE-seq. We extended this approach using a droplet-based multiomics platform to develop a trimodal assay that simultaneously measures transcriptomics (scRNA-seq), epitopes, and chromatin accessibility (scATAC-seq) from thousands of single cells, which we term TEA-seq. Together, these multimodal single-cell assays provide a novel toolkit to identify type-specific gene regulation and expression grounded in phenotypically defined cell types.


2018 ◽  
Author(s):  
Douglas Abrams ◽  
Parveen Kumar ◽  
R. Krishna Murthy Karuturi ◽  
Joshy George

AbstractBackgroundThe advent of single cell RNA sequencing (scRNA-seq) enabled researchers to study transcriptomic activity within individual cells and identify inherent cell types in the sample. Although numerous computational tools have been developed to analyze single cell transcriptomes, there are no published studies and analytical packages available to guide experimental design and to devise suitable analysis procedure for cell type identification.ResultsWe have developed an empirical methodology to address this important gap in single cell experimental design and analysis into an easy-to-use tool called SCEED (Single Cell Empirical Experimental Design and analysis). With SCEED, user can choose a variety of combinations of tools for analysis, conduct performance analysis of analytical procedures and choose the best procedure, and estimate sample size (number of cells to be profiled) required for a given analytical procedure at varying levels of cell type rarity and other experimental parameters. Using SCEED, we examined 3 single cell algorithms using 48 simulated single cell datasets that were generated for varying number of cell types and their proportions, number of genes expressed per cell, number of marker genes and their fold change, and number of single cells successfully profiled in the experiment.ConclusionsBased on our study, we found that when marker genes are expressed at fold change of 4 or more than the rest of the genes, either Seurat or Simlr algorithm can be used to analyze single cell dataset for any number of single cells isolated (minimum 1000 single cells were tested). However, when marker genes are expected to be only up to fC 2 upregulated, choice of the single cell algorithm is dependent on the number of single cells isolated and proportion of rare cell type to be identified. In conclusion, our work allows the assessment of various single cell methods and also aids in examining the single cell experimental design.


2020 ◽  
Vol 52 (10) ◽  
pp. 468-477
Author(s):  
Alexander C. Zambon ◽  
Tom Hsu ◽  
Seunghee Erin Kim ◽  
Miranda Klinck ◽  
Jennifer Stowe ◽  
...  

Much of our understanding of the regulatory mechanisms governing the cell cycle in mammals has relied heavily on methods that measure the aggregate state of a population of cells. While instrumental in shaping our current understanding of cell proliferation, these approaches mask the genetic signatures of rare subpopulations such as quiescent (G0) and very slowly dividing (SD) cells. Results described in this study and those of others using single-cell analysis reveal that even in clonally derived immortalized cancer cells, ∼1–5% of cells can exhibit G0 and SD phenotypes. Therefore to enable the study of these rare cell phenotypes we established an integrated molecular, computational, and imaging approach to track, isolate, and genetically perturb single cells as they proliferate. A genetically encoded cell-cycle reporter (K67p-FUCCI) was used to track single cells as they traversed the cell cycle. A set of R-scripts were written to quantify K67p-FUCCI over time. To enable the further study G0 and SD phenotypes, we retrofitted a live cell imaging system with a micromanipulator to enable single-cell targeting for functional validation studies. Single-cell analysis revealed HT1080 and MCF7 cells had a doubling time of ∼24 and ∼48 h, respectively, with high duration variability in G1 and G2 phases. Direct single-cell microinjection of mRNA encoding (GFP) achieves detectable GFP fluorescence within ∼5 h in both cell types. These findings coupled with the possibility of targeting several hundreds of single cells improves throughput and sensitivity over conventional methods to study rare cell subpopulations.


Author(s):  
Samuel Melton ◽  
Sharad Ramanathan

Abstract Motivation Recent technological advances produce a wealth of high-dimensional descriptions of biological processes, yet extracting meaningful insight and mechanistic understanding from these data remains challenging. For example, in developmental biology, the dynamics of differentiation can now be mapped quantitatively using single-cell RNA sequencing, yet it is difficult to infer molecular regulators of developmental transitions. Here, we show that discovering informative features in the data is crucial for statistical analysis as well as making experimental predictions. Results We identify features based on their ability to discriminate between clusters of the data points. We define a class of problems in which linear separability of clusters is hidden in a low-dimensional space. We propose an unsupervised method to identify the subset of features that define a low-dimensional subspace in which clustering can be conducted. This is achieved by averaging over discriminators trained on an ensemble of proposed cluster configurations. We then apply our method to single-cell RNA-seq data from mouse gastrulation, and identify 27 key transcription factors (out of 409 total), 18 of which are known to define cell states through their expression levels. In this inferred subspace, we find clear signatures of known cell types that eluded classification prior to discovery of the correct low-dimensional subspace. Availability and implementation https://github.com/smelton/SMD. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Youjin Hu ◽  
Jiawei Zhong ◽  
Yuhua Xiao ◽  
Zheng Xing ◽  
Katherine Sheu ◽  
...  

Abstract The differences in transcription start sites (TSS) and transcription end sites (TES) among gene isoforms can affect the stability, localization, and translation efficiency of mRNA. Gene isoforms allow a single gene diverse functions across different cell types, and isoform dynamics allow different functions over time. However, methods to efficiently identify and quantify RNA isoforms genome-wide in single cells are still lacking. Here, we introduce single cell RNA Cap And Tail sequencing (scRCAT-seq), a method to demarcate the boundaries of isoforms based on short-read sequencing, with higher efficiency and lower cost than existing long-read sequencing methods. In conjunction with machine learning algorithms, scRCAT-seq demarcates RNA transcripts with unprecedented accuracy. We identified hundreds of previously uncharacterized transcripts and thousands of alternative transcripts for known genes, revealed cell-type specific isoforms for various cell types across different species, and generated a cell atlas of isoform dynamics during the development of retinal cones.


2015 ◽  
Vol 112 (21) ◽  
pp. 6545-6550 ◽  
Author(s):  
Rosemary M. Onjiko ◽  
Sally A. Moody ◽  
Peter Nemes

Spatial and temporal changes in molecular expression are essential to embryonic development, and their characterization is critical to understand mechanisms by which cells acquire different phenotypes. Although technological advances have made it possible to quantify expression of large molecules during embryogenesis, little information is available on metabolites, the ultimate indicator of physiological activity of the cell. Here, we demonstrate that single-cell capillary electrophoresis-electrospray ionization mass spectrometry is able to test whether differential expression of the genome translates to the domain of metabolites between single embryonic cells. Dissection of three different cell types with distinct tissue fates from 16-cell embryos of the South African clawed frog (Xenopus laevis) and microextraction of their metabolomes enabled the identification of 40 metabolites that anchored interconnected central metabolic networks. Relative quantitation revealed that several metabolites were differentially active between the cell types in the wild-type, unperturbed embryos. Altering postfertilization cytoplasmic movements that perturb dorsal development confirmed that these three cells have characteristic small-molecular activity already at cleavage stages as a result of cell type and not differences in pigmentation, yolk content, cell size, or position in the embryo. Changing the metabolite concentration caused changes in cell movements at gastrulation that also altered the tissue fates of these cells, demonstrating that the metabolome affects cell phenotypes in the embryo.


Sign in / Sign up

Export Citation Format

Share Document