scholarly journals Dach1 Extends Artery Networks and Protects Against Cardiac Injury

Author(s):  
Brian Raftrey ◽  
Ian M Williams ◽  
Pamela E Rios Coronado ◽  
Xiaochen Fan ◽  
Andrew H Chang ◽  
...  

Rationale: Coronary artery disease (CAD) is the leading cause of death worldwide, but there are currently no methods to stimulate artery growth or regeneration in diseased hearts. Studying how arteries are built during development could illuminate strategies for re-building these vessels during ischemic heart disease. We previously found that Dach1 deletion in mouse embryos resulted in small coronary arteries. However, it was not known whether Dach1 gain-of-function would be sufficient to increase arterial vessels and whether this could benefit injury responses. Objective: We investigated how Dach1 overexpression in endothelial cells affected transcription and artery differentiation, and how it influenced recovery from myocardial infarction (MI). Methods and Results: Dach1 was genetically overexpressed in coronary endothelial cells (ECs) in either developing or adult hearts using ApjCreER. This increased the length and number of arterial end branches expanded arteries during development, in both the heart and retina, by inducing capillary ECs to differentiate and contribute to growing arteries. Single-cell RNA sequencing (scRNAseq) of ECs undergoing Dach1-induced arterial specification indicated that it potentiated normal artery differentiation, rather than functioning as a master regulator of artery cell fate. ScRNAseq also showed that normal arterial differentiation is accompanied by repression of lipid metabolism genes, which were also repressed by Dach1. In adults, Dach1 overexpression did not cause a statistically significant change artery structure prior to injury, but increased the number of perfused arteries in the injury zone post-MI. Conclusions: Our data demonstrate that increasing Dach1 is a novel method for driving artery specification and extending arterial branches, which could be explored as a means of mitigating the effects of CAD.

2020 ◽  
Author(s):  
Brian Raftrey ◽  
Ian Williams ◽  
Pamela E. Rios Coronado ◽  
Andrew H. Chang ◽  
Mingming Zhao ◽  
...  

AbstractCoronary artery disease (CAD) is the leading cause of death worldwide, but there are currently no available methods to stimulate growth or regeneration of artery networks in diseased hearts. Studying how arteries are built during embryonic development could illuminate strategies for re-building these vessels in the setting of ischemic heart disease. We previously found, using loss-of-function experiments, that the transcription factor Dach1 is required for coronary artery development in mouse embryos. Here, we report that Dach1 overexpression in endothelial cells (ECs) extended coronary arteries and improved survival and heart function in adult mice following myocardial infarction (MI). Dach1 overexpression increased the length and number of arterial end branches, in both heart and retinal vasculature, by causing additional capillary ECs to differentiate into arterial ECs and contribute to growing arteries. Single-cell RNA sequencing (scRNAseq) of ECs undergoing Dach1-induced arterial specification indicated that it potentiated normal artery differentiation, rather than functioning as a master regulator of artery cell fate. ScRNAseq also showed that normal arterial differentiation is accompanied by repression of lipid metabolism genes, which were also repressed by Dach1 prior to arterialization. Together, these results demonstrate that increasing the expression level of Dach1 is a novel pathway for driving specification of artery ECs and extending arterial vessels, which could be explored as a means of increasing artery coverage to mitigate the effects of CAD.


Author(s):  
Mark Christopher Arokiaraj ◽  
Jarad Wilson

AbstractBackgroundCoronary artery diseases and autoimmune disorders are common in clinical practice. In this study, a novel method of immune-modulation to modify the endothelial function was studied to modulate the features of the endothelial cells, and thereby to reduce coronary artery disease and other disorders modulated by endothelium.MethodsHUVEC cells were seeded in the cell culture, and streptococcus pyogenes were added to the cell culture, and the supernatant was studied for the secreted proteins. In the second phase, the bacterial lysate was synthesized, and the lysate was added to cell culture; and the proteins in the supernatant were studied at various time intervals.ResultsWhen streptococcus pyogenes alone was added to culture, E Cadherin, Angiostatin, EpCAM and PDGF-AB were some of the biomarkers elevated significantly. HCC1, IGFBP2 and TIMP were some of the biomarkers which showed a reduction. When the lysate was added, the cell-culture was maintained for a longer time, and it showed the synthesis of immune regulatory cytokines. Heatmap analysis showed a significant number of proteins/cytokines concerning the immune/pathways, and toll-like receptors superfamily were modified. BLC, IL 17, BMP 7, PARC, Contactin2, IL 10 Rb, NAP 2 (CXCL 7), Eotaxin 2 were maximally increased. By principal component analysis, the results observed were significant.ConclusionThere is potential for a novel method of immunomodulation of the endothelial cells, which have pleiotropic functions, using streptococcus pyogenes and its lysates.


2014 ◽  
Vol 24 (11) ◽  
pp. 1787-1796 ◽  
Author(s):  
Fernando H. Biase ◽  
Xiaoyi Cao ◽  
Sheng Zhong

Author(s):  
Francesca Pagani ◽  
Elisa Tratta ◽  
Patrizia Dell’Era ◽  
Manuela Cominelli ◽  
Pietro Luigi Poliani

AbstractEarly B-cell factor-1 (EBF1) is a transcription factor with an important role in cell lineage specification and commitment during the early stage of cell maturation. Originally described during B-cell maturation, EBF1 was subsequently identified as a crucial molecule for proper cell fate commitment of mesenchymal stem cells into adipocytes, osteoblasts and muscle cells. In vessels, EBF1 expression and function have never been documented. Our data indicate that EBF1 is highly expressed in peri-endothelial cells in both tumor vessels and in physiological conditions. Immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and fluorescence-activated cell sorting (FACS) analysis suggest that EBF1-expressing peri-endothelial cells represent bona fide pericytes and selectively express well-recognized markers employed in the identification of the pericyte phenotype (SMA, PDGFRβ, CD146, NG2). This observation was also confirmed in vitro in human placenta-derived pericytes and in human brain vascular pericytes (HBVP). Of note, in accord with the key role of EBF1 in the cell lineage commitment of mesenchymal stem cells, EBF1-silenced HBVP cells showed a significant reduction in PDGFRβ and CD146, but not CD90, a marker mostly associated with a prominent mesenchymal phenotype. Moreover, the expression levels of VEGF, angiopoietin-1, NG2 and TGF-β, cytokines produced by pericytes during angiogenesis and linked to their differentiation and activation, were also significantly reduced. Overall, the data suggest a functional role of EBF1 in the cell fate commitment toward the pericyte phenotype.


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


2021 ◽  
Vol 22 (8) ◽  
pp. 3955
Author(s):  
László Bálint ◽  
Zoltán Jakus

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


BMC Genomics ◽  
2020 ◽  
Vol 21 (S11) ◽  
Author(s):  
Adam Cornish ◽  
Shrabasti Roychoudhury ◽  
Krishna Sarma ◽  
Suravi Pramanik ◽  
Kishor Bhakat ◽  
...  

Abstract Background Single-cell sequencing enables us to better understand genetic diseases, such as cancer or autoimmune disorders, which are often affected by changes in rare cells. Currently, no existing software is aimed at identifying single nucleotide variations or micro (1-50 bp) insertions and deletions in single-cell RNA sequencing (scRNA-seq) data. Generating high-quality variant data is vital to the study of the aforementioned diseases, among others. Results In this study, we report the design and implementation of Red Panda, a novel method to accurately identify variants in scRNA-seq data. Variants were called on scRNA-seq data from human articular chondrocytes, mouse embryonic fibroblasts (MEFs), and simulated data stemming from the MEF alignments. Red Panda had the highest Positive Predictive Value at 45.0%, while other tools—FreeBayes, GATK HaplotypeCaller, GATK UnifiedGenotyper, Monovar, and Platypus—ranged from 5.8–41.53%. From the simulated data, Red Panda had the highest sensitivity at 72.44%. Conclusions We show that our method provides a novel and improved mechanism to identify variants in scRNA-seq as compared to currently existing software. However, methods for identification of genomic variants using scRNA-seq data can be still improved.


2014 ◽  
Vol 92 (4) ◽  
pp. 338-349 ◽  
Author(s):  
Kiranj K. Chaudagar ◽  
Anita A. Mehta

Atorvastatin, a lipid lowering agent, possesses various pleiotropic vasculoprotective effects, but its role in coronary angiogenesis is still controversial. Our objective was to study the effects of atorvastatin on the angiogenic responsiveness of coronary endothelial cells (cEC) from normal and diabetic rats. Male Wistar rats were distributed among 9 groups; (i) normal rats, (ii) 30 day diabetic rats, (iii) 60 day diabetic rats, (iv) normal rats administered a low dose of atorvastatin (1 mg/kg body mass, per oral (p.o.), for 15 days); (v) 30 day diabetic rats administered a low dose of atorvastatin; (vi) 60 day diabetic rats administered a low dose of atorvastatin; (vii) normal rats administered a high dose of atorvastatin (5 mg/kg, p.o., for 15 days); (viii) 30 day diabetic rats administered a high dose of atorvastatin; (ix) 60 day diabetic rats administered a high dose of atorvastatin. Each group was further divided into 2 subgroups, (i) sham ischemia–reperfusion and (ii) rats hearts that underwent ischemia–reperfusion. Angiogenic responsiveness the and nitric oxide (NO) releasing properties of the subgroups of cECs were studied using a chorioallantoic membrane assay and the Griess method, respectively. Atorvastatin treatment significantly increased VEGF-induced angiogenic responsiveness and the NO-releasing properties of cECs from all of the subgroups, compared with their respective non-treated subgroups except for the late-phase diabetic rat hearts that underwent ischemia–reperfusion, and the high dose of atorvastatin treatment groups. These effects of atorvastatin were significantly inhibited by pretreatment of cECs with l-NAME, wortmannin, and chelerythrine. Thus, treatment with a low dose of atorvastatin improves the angiogenic responsiveness of the cECs from normal and diabetic rats, in the presence of VEGF, via activation of eNOS–NO release.


Sign in / Sign up

Export Citation Format

Share Document