scholarly journals Endothelial Forkhead Box Transcription Factor P1 Regulates Pathological Cardiac Remodeling Through Transforming Growth Factor-β1–Endothelin-1 Signal Pathway

Circulation ◽  
2019 ◽  
Vol 140 (8) ◽  
pp. 665-680 ◽  
Author(s):  
Jie Liu ◽  
Tao Zhuang ◽  
Jingjiang Pi ◽  
Xiaoli Chen ◽  
Qi Zhang ◽  
...  

Background: Pathological cardiac fibrosis and hypertrophy, the common features of left ventricular remodeling, often progress to heart failure. Forkhead box transcription factor P1 (Foxp1) in endothelial cells (ECs) has been shown to play an important role in heart development. However, the effect of EC-Foxp1 on pathological cardiac remodeling has not been well clarified. This study aims to determine the role of EC-Foxp1 in pathological cardiac remodeling and the underlying mechanisms. Methods: Foxp1 EC-specific loss-of-function and gain-of-function mice were generated, and an angiotensin II infusion or a transverse aortic constriction operation mouse model was used to study the cardiac remodeling mechanisms. Foxp1 downstream target gene transforming growth factor-β1 (TGF-β1) was confirmed by chromatin immunoprecipitation and luciferase assays. Finally, the effects of TGF-β1 blockade on EC-Foxp1 deletion–mediated profibrotic and prohypertrophic phenotypic changes were further confirmed by pharmacological inhibition, more specifically by RGD-peptide magnetic nanoparticle target delivery of TGF-β1–siRNA to ECs. Results: Foxp1 expression is significantly downregulated in cardiac ECs during angiotensin II–induced cardiac remodeling. EC-Foxp1 deletion results in severe cardiac remodeling, including more cardiac fibrosis with myofibroblast formation and extracellular matrix protein production, as well as decompensated cardiac hypertrophy and further exacerbation of cardiac dysfunction on angiotensin II infusion or transverse aortic constriction operation. In contrast, EC-Foxp1 gain of function protects against pathological cardiac remodeling and improves cardiac dysfunction. TGF-β1 signals are identified as Foxp1 direct target genes, and EC-Foxp1 deletion upregulates TGF-β1 signals to promote myofibroblast formation through fibroblast proliferation and transformation, resulting in severe cardiac fibrosis. Moreover, EC-Foxp1 deletion enhances TGF-β1–promoted endothelin-1 expression, which significantly increases cardiomyocyte size and reactivates cardiac fetal genes, leading to pathological cardiac hypertrophy. Correspondingly, these EC-Foxp1 deletion–mediated profibrotic and prohypertrophic phenotypic changes and cardiac dysfunction are normalized by the blockade of TGF-β1 signals through pharmacological inhibition and RGD-peptide magnetic nanoparticle target delivery of TGF-β1–siRNA to ECs. Conclusions: EC-Foxp1 regulates the TGF-β1–endothelin-1 pathway to control pathological cardiac fibrosis and hypertrophy, resulting in cardiac dysfunction. Therefore, targeting the EC–Foxp1–TGF-β1–endothelin-1 pathway might provide a future novel therapy for heart failure.

2021 ◽  
Vol 10 (19) ◽  
pp. 4430
Author(s):  
Grażyna Sygitowicz ◽  
Agata Maciejak-Jastrzębska ◽  
Dariusz Sitkiewicz

The cellular and molecular mechanism involved in the pathogenesis of atrial fibrosis are highly complex. We have reviewed the literature that covers the effectors, signal transduction and physiopathogenesis concerning extracellular matrix (ECM) dysregulation and atrial fibrosis in atrial fibrillation (AF). At the molecular level: angiotensin II, transforming growth factor-β1, inflammation, and oxidative stress are particularly important for ECM dysregulation and atrial fibrotic remodelling in AF. We conclude that the Ang-II-MAPK and TGF-β1-Smad signalling pathways play a major, central role in regulating atrial fibrotic remodelling in AF. The above signalling pathways induce the expression of genes encoding profibrotic molecules (MMP, CTGF, TGF-β1). An important mechanism is also the generation of reactive oxygen species. This pathway induced by the interaction of Ang II with the AT2R receptor and the activation of NADPH oxidase. Additionally, the interplay between cardiac MMPs and their endogenous tissue inhibitors of MMPs, is thought to be critical in atrial ECM metabolism and fibrosis. We also review recent evidence about the role of changes in the miRNAs expression in AF pathophysiology and their potential as therapeutic targets. Furthermore, keeping the balance between miRNA molecules exerting anti-/profibrotic effects is of key importance for the control of atrial fibrosis in AF.


Cardiology ◽  
2015 ◽  
Vol 131 (2) ◽  
pp. 97-106 ◽  
Author(s):  
Weili Qiao ◽  
Cheng Wang ◽  
Bing Chen ◽  
Fan Zhang ◽  
Yaowu Liu ◽  
...  

Objective: To investigate the effects of ibuprofen on cardiac fibrosis in a rat model of type 1 diabetes. Methods: The diabetic model was established by injecting streptozotocin into the rats. Then, ibuprofen or pioglitazone was given by gavage for 8 weeks. The cardiac fibrosis was assessed, and the major components of the renin-angiotensin system, the transforming growth factor β1 (TGF-β1) and the mammalian target of rapamycin (mTOR), were evaluated by histopathological, immunohistochemical, Western blot analysis or ELISA assay. Results: Obvious cardiac fibrosis was detected in the diabetic group and was alleviated by ibuprofen treatment. Angiotensin-converting enzyme (ACE), angiotensin (Ang) II and AngII type 1 receptor (AT1-R) levels were higher, and ACE2, Ang(1-7) and Mas receptor (Mas-R) were lower in the diabetic group. The ratio of ACE to ACE2 was raised in the diabetic group. All these changes were ameliorated by ibuprofen. TGF-β1 and mTOR were raised in the hearts of the diabetic group and were attenuated by ibuprofen treatment. There was no significant difference between the ibuprofen and the pioglitazone groups. Conclusion: Ibuprofen could ameliorate the cardiac fibrosis in diabetic rats by reduction of the ACE/AngII/AT1-R axis and enhancement of the ACE2/Ang(1-7)/Mas-R axis, leading to a decrease in TGF-β1 and mTOR.


2001 ◽  
Vol 281 (5) ◽  
pp. C1457-C1467 ◽  
Author(s):  
Gaétan Thibault ◽  
Marie-Josée Lacombe ◽  
Lynn M. Schnapp ◽  
Alexandre Lacasse ◽  
Fatiha Bouzeghrane ◽  
...  

Using a novel pharmacological tool with125I-echistatin to detect integrins on the cell, we have observed that cardiac fibroblasts harbor five different RGD-binding integrins: α8β1, α3β1, α5β1, αvβ1, and αvβ3. Stimulation of cardiac fibroblasts by angiotensin II (ANG II) or transforming growth factor-β1 (TGF-β1) resulted in an increase of protein and heightening by 50% of the receptor density of α8β1-integrin. The effect of ANG II was blocked by an AT1, but not an AT2, receptor antagonist, or by an anti-TGF-β1 antibody. ANG II and TGF-β1 increased fibronectin secretion, smooth muscle α-actin synthesis, and formation of actin stress fibers and enhanced attachment of fibroblasts to a fibronectin matrix. The α8- and β1-subunits were colocalized by immunocytochemistry with vinculin or β3-integrin at focal adhesion sites. These results indicate that α8β1-integrin is an abundant integrin on rat cardiac fibroblasts. Its positive modulation by ANG II and TGF-β1 in a myofibroblast-like phenotype suggests the involvement of α8β1-integrin in extracellular matrix protein deposition and cardiac fibroblast adhesion.


2017 ◽  
Vol 18 (2) ◽  
pp. 147032031770665 ◽  
Author(s):  
Ning-Ping Wang ◽  
James Erskine ◽  
Wei-Wei Zhang ◽  
Rong-Hua Zheng ◽  
Li-Hui Zhang ◽  
...  

Introduction: The purpose of this study was to determine whether macrophages migrated from the spleen are associated with angiotensin II-induced cardiac fibrosis and hypertension. Methods: Sprague-Dawley rats were subjected to angiotensin II infusion in vehicle (500 ng/kg/min) for up to four weeks. In splenectomy, the spleen was removed before angiotensin II infusion. In the angiotensin II AT1 receptor blockade, telmisartan was administered by gastric gavage (10 mg/kg/day) during angiotensin II infusion. The heart and aorta were isolated for Western blot analysis and immunohistochemistry. Results: Angiotensin II infusion caused a significant reduction in the number of monocytes in the spleen through the AT1 receptor-activated monocyte chemoattractant protein-1. Comparison of angiotensin II infusion, splenectomy and telmisartan comparatively reduced the recruitment of macrophages into the heart. Associated with this change, transforming growth factor β1 expression and myofibroblast proliferation were inhibited, and Smad2/3 and collagen I/III were downregulated. Furthermore, interstitial/perivascular fibrosis was attenuated. These modifications occurred in coincidence with reduced blood pressure. At week 4, invasion of macrophages and myofibroblasts in the thoracic aorta was attenuated and expression of endothelial nitric oxide synthase was upregulated, along with a reduction in aortic fibrosis. Conclusions: These results suggest that macrophages when recruited into the heart and aorta from the spleen potentially contribute to angiotensin II-induced cardiac fibrosis and hypertension.


2013 ◽  
Vol 203 (2) ◽  
pp. 327-343 ◽  
Author(s):  
Bhaskar Ponugoti ◽  
Fanxing Xu ◽  
Chenying Zhang ◽  
Chen Tian ◽  
Sandra Pacios ◽  
...  

Keratinocyte mobilization is a critical aspect of wound re-epithelialization, but the mechanisms that control its precise regulation remain poorly understood. We set out to test the hypothesis that forkhead box O1 (FOXO1) has a negative effect on healing because of its capacity to inhibit proliferation and promote apoptosis. Contrary to expectations, FOXO1 is required for keratinocyte transition to a wound-healing phenotype that involves increased migration and up-regulation of transforming growth factor β1 (TGF-β1) and its downstream targets, integrin-α3 and -β6 and MMP-3 and -9. Furthermore, we show that FOXO1 functions in keratinocytes to reduce oxidative stress, which is necessary to maintain cell migration and prevent cell death in a TGF-β1–independent manner. Thus, our studies identify a novel function for FOXO1 in coordinating the response of keratinocytes to wounding through up-regulation of TGF-β1 and other factors needed for keratinocyte migration and protection against oxidative stress, which together promote migration and decrease apoptosis.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Li Li ◽  
Cheng-Lin Zhang ◽  
Dan Wu ◽  
Li-Ling Wu

Background: Cartilage intermediate layer protein-1 (CILP-1), a monomeric extracellular matrix glycoprotein expressed mainly in the middle zones of articular cartilage, interacts directly with transforming growth factor-β1 (TGF-β1). Recent studies showed that CILP-1 was upregulated in the heart tissue following cardiac ischemia reperfusion injury. However, the role of CILP-1 in pathological cardiac remodeling is poorly defined. Aims: To explore the effect of CILP-1 on myocardial interstitial fibrosis and reveal the possible molecular mechanism. Methods and Results: We found that CILP-1 was mainly expressed in mouse cardiac fibroblasts (CFs) by using western blot analysis and immunofluorescence. Myocardial expression of CILP-1 was upregulated in mice subjected to transverse aortic constriction (TAC) for 2, 4, and 8 weeks. AAV-9-mediated delivery of CILP-1 into mice increased the binding of CILP-1 with TGF-β1, attenuated interstitial fibrosis, and improved cardiac function. In cultured adult mouse CFs, CILP-1 overexpression inhibited myofibroblast differentiation and expression of profibrotic molecules induced by TGF-β1. Furthermore, CILP-1 attenuated TGF-β1-induced Smad3 phosphorylation and nuclear translocation. Conclusions: CILP-1 alleviates pressure overload-induced cardiac fibrosis and dysfunction. CILP-1 exerts its anti-fibrotic effect through targeting TGF-β1 signaling. This study will offer a new therapeutic strategy for preventing and treating myocardial interstitial remodeling.


2018 ◽  
Vol 96 (5) ◽  
pp. 527-534 ◽  
Author(s):  
Brice Ongali ◽  
Nektaria Nicolakakis ◽  
Xin-Kang Tong ◽  
Clotilde Lecrux ◽  
Hans Imboden ◽  
...  

Transgenic mice constitutively overexpressing the cytokine transforming growth factor-β1 (TGF-β1) (TGF mice) display cerebrovascular alterations as seen in Alzheimer’s disease (AD) and vascular cognitive impairment and dementia (VCID), but no or only subtle cognitive deficits. TGF-β1 may exert part of its deleterious effects through interactions with angiotensin II (AngII) type 1 receptor (AT1R) signaling pathways. We test such interactions in the brain and cerebral vessels of TGF mice by measuring cerebrovascular reactivity, levels of protein markers of vascular fibrosis, nitric oxide synthase activity, astrogliosis, and mnemonic performance in mice treated (6 months) with the AT1R blocker losartan (10 mg/kg per day) or the angiotensin converting enzyme inhibitor enalapril (3 mg/kg per day). Both treatments restored the severely impaired cerebrovascular reactivity to acetylcholine, calcitonin gene-related peptide, endothelin-1, and the baseline availability of nitric oxide in aged TGF mice. Losartan, but not enalapril, significantly reduced astrogliosis and cerebrovascular levels of profibrotic protein connective tissue growth factor while raising levels of antifibrotic enzyme matrix metallopeptidase-9. Memory was unaffected by aging and treatments. The results suggest a pivotal role for AngII in TGF-β1-induced cerebrovascular dysfunction and neuroinflammation through AT1R-mediated mechanisms. Further, they suggest that AngII blockers could be appropriate against vasculopathies and astrogliosis associated with AD and VCID.


2016 ◽  
Vol 38 (5) ◽  
pp. 1928-1938 ◽  
Author(s):  
Mian Cheng ◽  
Gang Wu ◽  
Yue Song ◽  
Lin Wang ◽  
Ling Tu ◽  
...  

Backgroud: Myocardial fibrosis results in myocardial remodelling and dysfunction. Celastrol, a traditional oriental medicine, has been suggested to have cardioprotective effects. However, its underlying mechanism is unknown. This study investigated the ability of celastrol to prevent cardiac fibrosis and dysfunction and explored the underlying mechanisms. Methods: Animal and cell models of cardiac fibrosis were used in this study. Myocardial fibrosis was induced by transverse aortic constriction (TAC) in mice. Cardiac hypertrophy and fibrosis were evaluated based on histological and biochemical measurements. Cardiac function was evaluated by echocardiography. The levels of transforming growth factor beta 1 (TGF-β1), extracellular signal regulated kinases 1/2 (ERK1/2) signalling were measured using Western blotting, while the expression of miR-21was analyzed by real-time qRT-PCR in vitro and in vivo. In vitro studies, cultured cardiac fibroblasts (CFs) were treated with TGF-β1 and transfected with microRNA-21(miR21). Results: Celastrol treatment reduced the increased collagen deposition and down-regulated α-smooth muscle actin (α-SMA), atrial natriuretic peptide (ANP), brain natriuretic peptides (BNP), beta-myosin heavy chain (β-MHC), miR-21 and p-ERK/ERK. Cardiac dysfunction was significantly attenuated by celastrol treatment in the TAC mice model. Celastrol treatment reduced myocardial fibroblast viability and collagen content and down-regulated α-SMA in cultured CFs in vitro. Celastrol also inhibited the miR-21/ERK signalling pathway. Celastrol attenuated miR-21 up-regulation by TGF-β1 and decreased elevated p-ERK/ERK levels in CFs transfected with miR-21. Conclusion: MiR-21/ERK signalling could be a potential therapeutic pathway for the prevention of myocardial fibrosis. Celastrol ameliorates myocardial fibrosis and cardiac dysfunction, these probably related to miR-21/ERK signaling pathways in vitro and in vivo.


2020 ◽  
Vol 48 (6) ◽  
pp. 030006052092635
Author(s):  
Guo-wei Wei ◽  
Ke-yue Li ◽  
Ke-li Tang ◽  
Cheng-Xian Shi

Objective To investigate the effects of tanshinone IIA on the transforming growth factor-β1 (TGF-β1)/Smads signaling pathway in angiotensin II-treated hepatic stellate cells (HSCs). Methods HSCs were cultured and treated with angiotensin II (10 μM) or angiotensin II (10 μM) plus tanshinone IIA (3, 10, or 30 μM). Cells were incubated for 48 hours and proliferation was determined with the Cell Counting Kit-8. The relative mRNA expression of TGF-β1, Smad4, and Smad7 was measured by quantitative real-time PCR, and the relative protein expression levels were investigated by western blotting. Results After angiotensin II treatment, cell proliferation was significantly accelerated. Furthermore, both the mRNA and protein expression of TGF-β1 and Smad4 was significantly up-regulated, while the mRNA and protein expression of Smad7 was significantly down-regulated compared with the control cells. Tanshinone IIA inhibited the observed effects of angiotensin II in a concentration-dependent manner, with significant inhibition exerted by tanshinone IIA at 10 and 30 μM. Conclusions Angiotensin II promotes the proliferation of HSCs, possibly by regulating the expression of components along the TGF-β1/Smads signaling pathway. Tanshinone IIA inhibits the angiotensin II-induced activation of this pathway, and may, therefore, have preventive and therapeutic effects in liver fibrosis.


Sign in / Sign up

Export Citation Format

Share Document