Anticancer Activity of Sweroside Nanoparticles in Prostate Cancer Bone Metastasis in PC-3 Cells Involved in Wnt/β-Catenin Signaling Pathway

2021 ◽  
Vol 17 (10) ◽  
pp. 1960-1971
Author(s):  
Sheng Huang ◽  
Changye Zou ◽  
Shangyan Xie ◽  
Bin Wang ◽  
Xitao LingHu ◽  
...  

Bone metastasis is a significant cause of morbidity and mortality in patients with prostate cancer (PCa). This study is aimed at illustrating the mechanism of sweroside-mediated regulation in bone metastasis in PCa cells. Owing to the limitations of antitumor drugs in terms of their physical and chemical properties, making them into nanomaterials can effectively improve drug stability and bioavailability. Apoptosis was assessed with flow cytometry using the annexin V/propidium iodide binding assay; proteins, including p53, P21, Bcl-2, and Bax; and induction of intracellular reactive oxygen species (ROS). Using colony formation assay, sphere formation assay, and the expression changes in CD133 and CD44, stem cell characteristics were assessed. Epithelial–mesenchymal transition (EMT) activity was accessed by levels of the expression changes of EMT-related markers, vimentin and E-cadherin. Wnt/β-catenin signaling pathway was examined to detect the levels of the expression changes of snail and β-catenin. PC-3 cells were treated with lithium chloride (LiCl), which is an agonist of Wnt/β-catenin signaling, and the levels of CD133, CD44, vimentin, E-cadherin, snail, and β-catenin were detected. T-cell factor/lymphocyte enhancer factor (TCF/LEF) activity in cells overexpressing β-catenin was used to detect the effects on β-catenin transcription, and the expression of c-myc, Cyclin D1, Survivin, and MMP-7 were used to detect Wnt downstream target genes. Our results suggest that sweroside induces apoptosis and intracellular ROS; upregulates apoptotic proteins; and suppresses proliferation, invasion, and migration, preventing stem cell characteristics, including sphere formation, colony formation, and CD133 and CD44 expressions. Furthermore, sweroside nanoparticles exerts inhibitory effects on β-catenin transcription by suppressing TTCF/LEF activity in cells overexpressing β-catenin and downregulation of the expression of Wnt downstream target genes, including c-myc, Cyclin D1, Survivin, and MMP-7. The potential therapeutic effect of sweroside nanoparticles on bone metastatis of PCa was suggested, by these findings.

Author(s):  
Chuan-yi Hu ◽  
Juan Chen ◽  
Xin-hua Qin ◽  
Pan You ◽  
Jie Ma ◽  
...  

Abstract Background Bone metastasis is the leading cause of mortality and reduced quality of life in patients with metastatic prostate cancer (PCa). Long non-coding RNA activated by DNA damage (NORAD) has been observed to have an abnormal expression in various cancers. This article aimed to explore the molecular mechanism underlying the regulatory role of NORAD in bone metastasis of PCa. Methods NORAD expression in clinical PCa tissues and cell lines was detected with the application of qRT-PCR. Cancer cells were then transfected with plasmids expressing NORAD, after which Transwell assay and CCK-8 assay were carried out to detect proliferation, migration, and bone metastasis of PCa. NORAD downstream target molecules were screened through bioinformatics analysis, followed by further verification using dual luciferase assay. Extracellular vesicles (EVs) were labeled with PKH67 and interacted with bone marrow stromal cells. The gain- and loss-function method was applied to determine the internalization and secretion of PCa cells-derived EVs under the intervention of downstream target molecules or NORAD. Results PCa tissues and cell lines were observed to have a high expression of NORAD, particularly in tissues with bone metastasis. NORAD knockdown resulted in reduced secretion and internalization of EVs, and suppressed proliferation, migration, and bone metastasis of PCa cells. It was indicated that NORAD interacted with miR-541-3p, leading to the upregulation of PKM2. Forced expression of PKM2 promoted the transfer of PKH67-labeled EVs to bone marrow stromal cells. Conclusions NORAD might serve as a ceRNA of miR-541-3p to promote PKM2 expression, thereby enhancing the development of bone metastasis in PCa by promoting internalization and transfer of EVs of cancer cells, providing an insight into a novel treatment for the disorder.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Masaharu Yoshihara ◽  
Teppei Nishino ◽  
Manoj Kumar Yadav ◽  
Akihiro Kuno ◽  
Takeshi Nagata ◽  
...  

Abstract Objective The Delta-Notch signaling pathway induces fine-grained patterns of differentiation from initially homogeneous progenitor cells in many biological contexts, including Drosophila bristle formation, where mathematical modeling reportedly suggests the importance of production rate of the components of this signaling pathway. In contrast, the epithelial differentiation of bile ducts in the developing liver is unique in that it occurs around the portal vein cells, which express extremely high amounts of Delta ligands and act as a disturbance for the amount of Delta ligands in the field by affecting the expression levels of downstream target genes in the cells nearby. In the present study, we mathematically examined the dynamics of the Delta-Notch signaling pathway components in disturbance-driven biliary differentiation, using the model for fine-grained patterns of differentiation. Results A portal vein cell induced a high Notch signal in its neighboring cells, which corresponded to epithelial differentiation, depending on the production rates of Delta ligands and Notch receptors. In addition, this epithelial differentiation tended to occur in conditions where fine-grained patterning was reported to be lacking. These results highlighted the potential importance of the stability towards homogeneity determined by the production rates in Delta ligands and Notch receptors, in a disturbance-dependent epithelial differentiation.


Author(s):  
Shaojun Nong ◽  
Zhiwei Wang ◽  
Zhongqing Wei ◽  
Limin Ma ◽  
Yangbo Guan ◽  
...  

2020 ◽  
Vol 319 (1) ◽  
pp. C93-C104
Author(s):  
Nuo Li ◽  
Yang Yu ◽  
Baoming Wang

Esophageal squamous cell carcinoma (ESCC) ranks among the five most common cancers in China and has a five-year survival rate of less than 15%. The transcription factor ATPase-family AAA-domain-containing protein 2 (ATAD2) has potential as a therapeutic target in various tumors, and microarray-based gene expression profiling reveals dysregulation of ATAD2 specifically in ESCC. Here we investigated whether ATAD2 could mediate a regulation of cancer stem cell (CSC) biological functions in ESCC. Immunohistochemical staining, reverse transcription quantitative polymerase chain reaction, and Western blot assays all revealed upregulation of ATAD2 in ESCC tissues and cell lines, which furthermore correlated with progression of ESCC. In loss-of-function experiments, silencing of ATAD2 inhibited activation of the Hedgehog signaling pathway, as indicated by reduced expression of glioma-associated oncogene family zinc finger 1 (Gli1), smoothened frizzled class receptor (SMO), and patched 1 (PTCH1). Investigations with 5-ethynyl-2′-deoxyuridine (EdU), Transwell assay, scratch test, flow cytometry, and colony formation assay showed that silencing of ATAD2 or inhibiting the Hedgehog signaling decreased the proliferation, invasion, and migration abilities along with colony formation, but elevated the apoptosis rate of CSCs. Furthermore, in vivo experiments validated the suppressive effect of siRNA-mediated ATAD2 silencing on tumor growth in nude mice. Thus, downregulation of ATAD2 can seemingly restrain the malignant phenotypes of ESCC cells through inhibition of the Hedgehog signaling pathway.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Juan Zhang ◽  
Jiangang Song ◽  
Jin Xu ◽  
Xuemei Chen ◽  
Peihao Yin ◽  
...  

Early growth response- (Egr-) 1 is an upstream master switch in controlling inflammatory responses following myocardial ischemia-reperfusion (I/R). Activation of extracellular signal-regulated protein kinase-1 and kinase-2 (ERK1/2) signaling is known to upregulate Egr-1. ERK1/2 pathway has been previously shown to mediate the therapeutic action of electroacupucture (EA). Thus, we hypothesized that EA would reduce myocardial I/R injury and inflammatory responses through inhibiting Egr-1 expression via the ERK1/2 pathway. Mice were pretreated with EA, U0126, or combination of EA and U0126 and then underwent 1 h myocardial ischemia and 3 h reperfusion. We investigated that EA significantly attenuated the I/R-induced upregulation of both Egr-1 and phosporylated-ERK1/2 (p-ERK1/2), decreased myocardial inflammatory cytokines including tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β), and reduced the infarct size and the release of cardiac troponin I (cTnI). U0126 treatment also exhibited the same effect as EA on Egr-1 level and subsequent cardioprotective effects. There was no additive effect of cotreatment with EA and U0126 on the expression of Egr-1 and its downstream target genes (TNF-α, IL-1β) or serum cTnI level. Collectively, these observations suggested that EA attenuates myocardial I/R injury, possibly through inhibiting the ERK1/2-Egr-1 signaling pathway and reducing the release of proinflammatory cytokines.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yu Sun ◽  
Sheng-Hua Li ◽  
Ji-Wen Cheng ◽  
Gang Chen ◽  
Zhi-Guang Huang ◽  
...  

Background. The expression and mechanism of microRNA-205 (miRNA-205) in prostate cancer (PCa) and its bone metastasis remain controversial. Materials and Methods. The expression and discriminating capability of miRNA-205 were assessed by drawing a forest plot and a summarized receiver operating characteristic (SROC) curve, using data available from 27 miRNA-array and miRNA-sequencing datasets. The miRNA-205 target genes were acquired from online prediction tools, differentially upregulated genes in PCa, and differentially expressed genes (DEGs) after miRNA-205 transfection into PCa cell lines. Functional enrichment analysis was conducted to explore the biological mechanism of miRNA-205 targets. Immunohistochemistry (IHC) was applied to verify the protein level of the hub gene. Results. The expression of miRNA-205 in the PCa group (1,461 samples) was significantly lower than that in the noncancer group (510 samples), and the downregulation of miRNA-205 showed excellent sensitivity and specificity in differentiating between the two groups. In bone metastatic PCa, the miRNA-205 level was further reduced than in nonbone metastatic PCa, and it showed a good capability in distinguishing between the two groups. In total, 153 miRNA-205 targets were screened through the three aforementioned methods. Based on the results of functional enrichment analysis, the targets of miRNA-205 were mainly enriched during chromosome segregation and phospholipid-translocating ATPase activity and in the spindle microtubule and the p53 signaling pathway. CDK1 had the highest connectivity in the PPI network analysis and was screened as one of the hub genes. A statistically significant negative correlation between miRNA-205 and CDK1 was observed. The expression of CDK1 in PCa samples was pronouncedly upregulated in terms of both the mRNA level and the protein level when compared with noncancer samples. Conclusion. miRNA-205 may play a vital role in PCa tumorigenesis and bone metastasis by targeting CDK1.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2175-2175
Author(s):  
Amittha Wickrema ◽  
Uddin Shahab ◽  
Jeong Ah-Kang ◽  
Ying Zhou ◽  
Koen van Besien ◽  
...  

Abstract Erythropoietin (Epo) and stem cell factor (SCF) guide erythroid cell maturation by exerting their effects at various stages of differentiation. Distinct and overlapping functions of these two growth factors have been well characterized. However, signaling pathways responsible for the antiapoptotic function of Epo and the proliferative function of SCF has not been fully characterized. Especially activation of common upstream signaling elements PI3-kinase, Akt kinase and phosphorylation/inactivation of forkhead transcription factors by both Epo and SCF bring about distinct functional outcomes have not been understood. In the present study we examined the activation of p70S6/mTOR pathway by Epo and SCF in CD34-derived primary erythroid progenitors. Our results provide evidence for activation of p70S6 kinase and mTOR by SCF but not by Epo or IGF-1 (insulin-like growth factor-1). We also show that only SCF phosphorylates protein translational regulatory proteins, 4E-BP1 and S6 ribosomal protein suggesting its involvement in promoting protein translation. Furthermore, we demonstrate that inhibition of mTOR by rapamycin results in reduction in erythroid cell proliferation and colony-formation under steady state culture conditions demonstrating the involvement of downstream signaling elements in the PI3/Akt kinase pathway in cell proliferation apart from its antiapoptotic signal. The reduction of both BFU-E and CFU-GM colony formation indicated that rapamycin also affects early hematopoietic cells. Examination of a parallel pathway involving signaling element Mnk1 showed that both Mnk1 and its downstream target eIF4E are not phosphorylated in response to SCF or Epo. However, these protein were constitutively phosphorylated in primary erythroid progenitors. Interestingly, we also found that during the proliferative phase of erythroid differentiation mTOR is mostly detected in the cytoplasmic fraction of the cells whereas during terminal phase of differentiation mTOR is detected in the nuclear fraction. These results suggest that mTOR may have additional functions associated with chromatin remodeling in erythroid progenitors, which occur prior to enucleation. Taken together, our data provide a mechanism for how distinct functions of Epo and SCF are accomplished through selective use of a common signaling pathway explaining in part how functional diversity is acheived.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1190-1190
Author(s):  
Wenhuo Hu ◽  
James Dooley ◽  
Stephen S. Chung ◽  
Safak Yalcin ◽  
Yu Sup Shin ◽  
...  

Abstract microRNAs (miRNAs) are important regulators of both embryonic and adult tissue stem cell self-renewal. We previously showed that ectopic expression of miR-29a, a miRNA highly expressed in HSCs as well as in human acute myeloid leukemia (AML) stem cells, in immature mouse hematopoietic cells is sufficient to induce a myeloproliferative disorder that progresses to AML. During the early phase of this disease, miR-29a induces aberrant self-renewal of committed myeloid progenitors, strongly suggesting a role for miR-29a in regulating HSC self-renewal. In order to determine the role of miR-29a in HSC function, we have evaluated our recently described miR-29a/b1 null mouse. Homozygous deletion of miR-29a/b1 resulted in reduced bone marrow cellularity and reduced colony forming capacity of hematopoietic stem and progenitor cells (HSPCs). The phenotype was mediated specifically by miR-29a since miR-29b expression was not significantly altered in HSCs and reconstitution of miR-29a/b1 null HSPCs with miR-29a, but not miR-29b, rescued in vitro colony formation defects. Self-renewal defects were observed in miR-29a deficient HSCs in both competitive and non-competitive transplantation assays, and these deficits were associated with increased HSC cell cycling and apoptosis. Gene expression studies of miR-29a deficient HSCs demonstrated widespread gene dysregulation including a number of up-regulated miR-29a target genes including DNA methylation enzymes (Dnmt3a, -3b) and cell cycle regulators (e.g. Cdk6, Tcl1, Hbp1, Pten). Knockdown of one of these targets, Dnmt3a, in miR-29a deficient HSCs resulted in partial restoration of colony formation, providing functional validation that Dnmt3a mediates part of miR-29a null HSPCs functional defects. miR-29a loss also abrogated leukemogenesis in the MLL-AF9 retroviral AML model. Together, our results demonstrate that miR-29a positively regulates HSC self-renewal and is required for myeloid leukemogenesis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document