Effect of Type 1 Collagen Bioactive Material Scaffold on the Recovery of Sports-Caused Cartilage Injury

2022 ◽  
Vol 12 (1) ◽  
pp. 19-27
Author(s):  
Xiaocheng Jiang ◽  
Yuxiang Ren ◽  
Xintao Zhang ◽  
Tian You ◽  
Shiyou Ren ◽  
...  

This study was aim to investigate the effect of type 1 collagen (Col I) bioactive scaffold on regeneration and repair of motor cartilage injury. Fifteen New Zealand rabbits were randomly divided into sham operation group (Sham group, only cartilage was exposed, no defect was made), model group Focal cortical dysplasias (FCD) group, cartilage defect model], and treatment group (Col I group, cartilage defect + Col I bioactive scaffold treatment). The cartilage tissue of each group was detected 16 weeks after the operation. Immunohistochemistry and Western Blot were adopted to detect the expression of cartilage related proteins in each group. The results showed that Col I bioactive scaffold could repair the gross morphology of cartilage defect, promote the regeneration and repair of chondrocytes in defect area, and reduce the mast cells in defect area. Western Blot detection of the expression of signal pathway marker proteins showed that expression of Wnt protein, β-catenin protein, and phosphofructokinase-1 (PFK-1) protein in the FCD group were significantly reduced than Sham group (P < 0.05), while the expression of phosphoenolpyruvate carboxykinase 1 (PEPCK1) protein was significantly increased (P < 0.05). Expression of Wnt protein, β-catenin protein, and PFK-1 protein in Col I group increased significantly versus FCD group (P < 0.05), while the expression of PEPCK1 protein significantly decreased (P < 0.05). In conclusion, Col I bioactive scaffolds could regenerate and repair cartilage defects, and the mechanism may be related to Wnt signaling pathway and glycolysis/gluconeogenesis pathway.

Author(s):  
Vyacheslav Ogay ◽  
Miras Karzhauov ◽  
Ainur Mukhambetova ◽  
Eric Raimagambetov ◽  
Nurlan Batpenov

Introduction: The purpose of this study was to investigate whether intra-articular injection of synovium-derived mesenchymal stem cells (SD MSCs) with low molecular weight hyaluronic acid (HA) could promote regeneration of massive cartilage in rabbits.Material and methods: The SD MSCs were harvested from the knees of 10 Flemish giant rabbits, expanded in culture, and characterized. A reproducible 4-mm cylindrical defect was created in the intercondylar groove area using a kit for the mosaic chondroplasty of femoral condyle COR (De Puy, Mitek). The defect was made within the cartilage layer without destruction of subchondral bone. Two weeks after the cartilage defect, SD MSCs (2 × 106 cell/0.15 ml) were suspended in 0.5% low molecular weight HA (0.15 ml) and injected into the left knee, and HA solution (0.30 ml) alone was placed into the right knee. Cartilage regeneration in the experimental and control groups were evaluated by macroscopically and histologically at 10, 30, and 60 days.Results: On day 10, after intra-articular injection of SD MSCs, we observed an early process of cartilage regeneration in the defect area. Histological studies revealed that cartilage defect was covered by a thin layer of spindle-shaped undifferentiated cells and proliferated chodroblasts. In contrast, an injection of HA did not induce reparation of cartilage in the defect area. At 30 days, macroscopic observation showed that the size of cartilage defect after SD MSC injection was significantly smaller than after HA injection. Histological score was also better in the MSC- treated intercondylar defect. At 60 days after MSC treatment, cartilage defect was nearly nonexistent and looked similar to an intact cartilage.Conclusion: Thus, intra-articular injection of SD MSCs can adhere to the defect in the intercondylar area, and promote cartilage regeneration in rabbits.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Po-Cheng Chang ◽  
Shien-Fong Lin ◽  
Yen Chu ◽  
Hung-Ta Wo ◽  
Hui-Ling Lee ◽  
...  

Background. LCZ696 (valsartan/sacubitril) therapy significantly reduced mortality in patients with heart failure (HF). Although a clinical trial (PARADISE-MI Trial) has been ongoing to examine the effects of LCZ696 in myocardial infarction (MI) patients, the effects of LCZ696 on remodeling of cardiac electrophysiology in animal models remain largely unclear. Methods. We performed coronary artery ligation to create MI in Sprague-Dawley rats. Echocardiography was performed one week after MI to confirm the development of HF with left ventricular ejection fraction ≤ 40%. MI rats were randomly assigned to receive medical therapy for 4 weeks: LCZ696, enalapril, or vehicle. The sham-operation rats received sham operation without MI creation. In vivo electrophysiological exams were performed under general anesthesia. Western blot analyses were conducted to quantify ion channel proteins. Results. The HF-vehicle group did not show significant changes in LVEF. Both enalapril and LCZ696 therapy significantly improved LVEF. The HF-vehicle group had higher ventricular arrhythmia (VA) inducibility than the sham group. As compared with the HF-vehicle group, LCZ696 therapy significantly reduced VA inducibility, but enalapril therapy did not. Western blot analyses showed significant downregulation of NaV1.5, ERG, KCNE1, and KCNE2 channel proteins in the HF vehicle group compared with the sham group. LCZ696 therapy upregulated protein expression of ERG, KCNE1, and KCNE2. Conclusion. As compared with enalapril therapy, LCZ696 therapy led to improvement of LVEF, reduced VA inducibility, and upregulated expression of K+ channel proteins.


2019 ◽  
Vol 7 (1) ◽  
pp. 77-90 ◽  
Author(s):  
Wenqiang Yan ◽  
Xingquan Xu ◽  
Qian Xu ◽  
Ziying Sun ◽  
Qing Jiang ◽  
...  

Abstract Based on our previous study, the utilization of an ultraviolet light photo-cross-linkable hyaluronic acid (HA) hydrogel integrated with a small molecule kartogenin-encapsulated nanoparticles obtained good reconstruction of osteochondral defects in a rabbit model, indicating the superiority of injectable hydrogel-based scaffolds in cartilage tissue engineering. Platelet-rich plasma (PRP), rich in various growth factors, proteins and cytokines, is considered to facilitate cartilage healing by stimulating cell proliferation and inducing chondrogenesis in cartilage defect site. The aim of this study was to test the therapeutic feasibility of autologous PRP combined with injectable HA hydrogel on cartilage repair. The focal cartilage defects with different critical sizes in the medial femoral condyle of a porcine model were used. At 6 months, the minipigs were sacrificed for assessment of macroscopic appearance, magnetic resonance imaging, micro-computed tomography, histology staining and biomechanics. The HA hydrogel combined with PRP-treated group showed more hyaline-like cartilage exhibited by macroscopic appearance and histological staining in terms of extracellular matrix and type II collagen without formation of hypertrophic cartilage, indicating its capacity to improve cartilage healing in the minipig model evaluated at 6 months, with full-thickness cartilage defect of 8.5 mm diameter and osteochondral defect of 6.5 mm diameter, 5 mm depth exhibiting apparent regeneration.


Author(s):  
GD Lazishvili ◽  
KA Egiazaryan ◽  
DV Nikishin ◽  
AA Voroncov ◽  
DV Klinov

Investigation of the efficacy of collagen membranes used in the full-thickness hyaline cartilage defect surgery is extremely urgent from the point of view of everyday healthcare. However, there is no information about the collagen membrane transformation timeframe, patterns and type of tissue the membrane transforms into, nor on the quality of the newly formed cartilage, which hinders the use of collagen membranes in clinical practice. This study aimed to investigate the biological potential of collagen membranes and their capacity to transform into cartilage tissue. The study involved four pigs as subjects. We induced a full-thickness cartilage defect on their right hind limb joint and implanted an Ortokeep collagen membrane to remedy it. Two full-thickness cartilage defects were induced on the left hind limb joints of the animals, one was treated with an implanted Chondro-Gide collagen membrane, the other remained without a membrane. The animals were withdrawn from the experiment at 2, 3, 4, 6 months after the operation. This report contains results of the macroscopic and microscopic analyses revealing the character of cartilage tissue regeneration at various timepoints post-surgery. The collagen membranes proved to have a high biological potential and a capacity to transform into cartilage tissue. The cartilages were identifiable from the 3rd month of the study. Their thickness was growing significantly (p < 0.05) up to the 4th month post-surgery, gaining 18.7% in group 1 and 12.8% in group 2; afterwards, the formed tissue "matured". We have shown that the AMIC technique allows significant (p < 0.05) reduction of the bone tissue destruction area.


2013 ◽  
Vol 815 ◽  
pp. 345-349 ◽  
Author(s):  
Ching Wen Hsu ◽  
Ping Liu ◽  
Song Song Zhu ◽  
Feng Deng ◽  
Bi Zhang

Here we reported a combined technique for articular cartilage repair, consisting of bone arrow mesenchymal stem cells (BMMSCs) and poly (dl-lactide-co-glycolide-b-ethylene glycol-b-dl-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers carried with tissue growth factor (TGF-belat1). In the present study, BMMSCs seeded on PLGA-PEG-PLGA with were incubated in vitro, carried or not TGF-belta1, Then the effects of the composite on repair of cartilage defect were evaluated in rabbit knee joints in vivo. Full-thickness cartilage defects (diameter: 5 mm; depth: 3 mm) in the patellar groove were either left empty (n=18), implanted with BMMSCs/PLGA (n=18), TGF-belta1 modified BMMSCs/PLGA-PEG-PLGA. The defect area was examined grossly, histologically at 6, 24 weeks postoperatively. After implantation, the BMMSCs /PLGA-PEG-PLGA with TGF-belta1 group showed successful hyaline-like cartilage regeneration similar to normal cartilage, which was superior to the other groups using gross examination, qualitative and quantitative histology. These findings suggested that a combination of BMMSCs/PLGA-PEG-PLGA carried with tissue growth factor (TGF-belat1) may be an alternative treatment for large osteochondral defects in high loading sites.


Author(s):  
Andrea R. Tan ◽  
Elena Alegre-Aguarón ◽  
Divya N. Dujari ◽  
Sonal R. Sampat ◽  
J. Chloë Bulinski ◽  
...  

Strategies for cartilage tissue engineering and repair have recently focused on cell sources from the surrounding joint tissue as an alternative to chondrocytes. Synovium-derived stem cells (SDSCs) are found in the intimal layer of the synovium, the thin overlying capsule surrounding the joint space [1] and have been found to exhibit a greater chondrogenic potential than stem cells from other origins such as bone marrow stem cells or adipose derived stem cells [2–4]. Under directed cues, these cells have been shown to be capable of migrating from the synovium membrane into articular cartilage defects, though the mechanism behind such movement is unclear. As a first step, we have previously shown that SDSCs expanded in 2D monolayer culture in a growth factor cocktail of TGF-β1, FGF, and PDGF-ββ exhibit directed cathodal migration with perpendicular alignment when under the influence of an applied DC electric field [5]. As cellular behavior and response to an external stimulus can change with exposure to growth factors and passage number, we look here to characterize the effects of passaging on the migration response of SDSCs to an applied electric field. We hypothesize that if these cells develop more chondrocyte-like characteristics with growth factor passaging, their response will mimic that which has previously been reported for chondrocytes, notably directed cathodal (negative pole) migration and perpendicular realignment of the long axis to the direction of applied field [6].


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 714
Author(s):  
Alvin Kai-Xing Lee ◽  
Yen-Hong Lin ◽  
Chun-Hao Tsai ◽  
Wan-Ting Chang ◽  
Tsung-Li Lin ◽  
...  

Cartilage injury is the main cause of disability in the United States, and it has been projected that cartilage injury caused by osteoarthritis will affect 30% of the entire United States population by the year 2030. In this study, we modified hyaluronic acid (HA) with γ-poly(glutamic) acid (γ-PGA), both of which are common biomaterials used in cartilage engineering, in an attempt to evaluate them for their potential in promoting cartilage regeneration. As seen from the results, γ-PGA-GMA and HA, with glycidyl methacrylate (GMA) as the photo-crosslinker, could be successfully fabricated while retaining the structural characteristics of γ-PGA and HA. In addition, the storage moduli and loss moduli of the hydrogels were consistent throughout the curing durations. However, it was noted that the modification enhanced the mechanical properties, the swelling equilibrium rate, and cellular proliferation, and significantly improved secretion of cartilage regeneration-related proteins such as glycosaminoglycan (GAG) and type II collagen (Col II). The cartilage tissue proof with Alcian blue further demonstrated that the modification of γ-PGA with HA exhibited suitability for cartilage tissue regeneration and displayed potential for future cartilage tissue engineering applications. This study built on the previous works involving HA and further showed that there are unlimited ways to modify various biomaterials in order to further bring cartilage tissue engineering to the next level.


Orthopedics ◽  
2005 ◽  
Vol 28 (10) ◽  
Author(s):  
Roberto Diaz ◽  
Matthew Kidwell ◽  
John Albright ◽  
Lori Dolan

Author(s):  
Yanhong Zhao ◽  
Xige Zhao ◽  
Rui Zhang ◽  
Ying Huang ◽  
Yunjie Li ◽  
...  

Repair of articular cartilage defects is a challenging aspect of clinical treatment. Kartogenin (KGN), a small molecular compound, can induce the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into chondrocytes. Here, we constructed a scaffold based on chondrocyte extracellular matrix (CECM) and poly(lactic-co-glycolic acid) (PLGA) microspheres (MP), which can slowly release KGN, thus enhancing its efficiency. Cell adhesion, live/dead staining, and CCK-8 results indicated that the PLGA(KGN)/CECM scaffold exhibited good biocompatibility. Histological staining and quantitative analysis demonstrated the ability of the PLGA(KGN)/CECM composite scaffold to promote the differentiation of BMSCs. Macroscopic observations, histological tests, and specific marker analysis showed that the regenerated tissues possessed characteristics similar to those of normal hyaline cartilage in a rabbit model. Use of the PLGA(KGN)/CECM scaffold may mimic the regenerative microenvironment, thereby promoting chondrogenic differentiation of BMSCs in vitro and in vivo. Therefore, this innovative composite scaffold may represent a promising approach for acellular cartilage tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document