Synthesis and Electroluminescence Property of New Hexaphenyl Benzene Derivatives Including Emitting Core for OLED

2015 ◽  
Vol 15 (10) ◽  
pp. 8289-8294 ◽  
Author(s):  
Hwangyu Shin ◽  
Hyeonmi Kang ◽  
Jong-Hyung Kim ◽  
Yun-Fan Wang ◽  
Seungho Kim ◽  
...  

Three new emitting compounds of 5P-2TPA, 5P-2An and 5P-2Py for OLED based on hexaphenyl benzene moiety were synthesized. Physical properties were systematically examined by the change of the substitution groups of the synthesized materials. Photoluminescence (PL) spectrum of the synthesized materials showed maximum emitting wavelengths of about 437∼488 nm in solution state and 457∼516 nm in film state, indicating blue emission color. OLED devices were fabricated by the synthesized compounds using vacuum deposition process as an emitting layer. Device structure was ITO/2-TNATA 60 nm/NPB 15 nm/EML 35 nm/TPBi 20 nm/LiF 1 nm/Al 200 nm. External quantum efficiencies and CIE values of 5P-2TPA, 5P-2An and 5P-2Py were 3.34, 1.06 and 2.06% and (0.14, 0.12), (0.23, 0.45) and (0.24, 0.45), respectively. The three compounds exhibited thermal stablility with high Td of 426 °C, 449 °C and 467 °C.

2000 ◽  
Vol 655 ◽  
Author(s):  
M. Tarutani ◽  
T. Sato ◽  
M. Yamamuka ◽  
T. Kawahara ◽  
T. Horikawa ◽  
...  

Abstract(Ba,Sr)TiO3 [BST] films were deposited by the flash vaporization CVD method with a unique liquid delivery system. An inductively coupled plasma mass spectrometry [ICP-MS] analysis revealed the decline of (Ba+Sr)/Ti molar ratio of the initial BST-layer on Ru. By readjusting the flow ratio of liquid sources and using a two-step deposition method, we obtained 30-nm-thick BST films with uniform composition profile, exhibiting good electrical properties. The leakage property, however, was severely deteriorated in BST films less than 24 nm thick. A SEM observation showed the presence of micro-roughness or micro-hillocks in these films, which were confirmed to be caused by Ru oxidation. Therefore, an annealing process of the Ru electrode was added for its planarization, and the CVD process was also improved. As a result, we obtained smooth and finely crystallized ∼ 20-nm-thick BST films with good electrical properties of equivalent SiO2 thickness (teq) ∼ 0.45 nm and leakage current < 1 × 10−7 A/cm2. We also measured properties of BST films deposited on the 3-D Ru electrode. The results are briefly discussed.


2005 ◽  
Vol 877 ◽  
Author(s):  
Jianmin Bai ◽  
Yunhao Xu ◽  
Jian-Ping Wang

AbstractWe developed a physical vacuum deposition technique combining an on-line sputtering/evaporation process with an integrated nanocluster deposition process to prepare core-shell type nanoparticles. High magnetic moment (Fe60Co40)coreAushell and (Fe60Co40)coreAgshell superparamagnetic nanoparticles with controllable particle size of 10 – 20 nm and Au/Ag shell thickness of 1 – 3 nm were prepared successfully by using method. Au shell is not only functional for the potential biocompatibility but also the key to prevent oxidation of FeCo nanoparticles. Saturation magnetization of (Fe60Co40)coreAushell nanoparticles was found three times higher than that of iron oxide nanoparticles. This novel technique enables us to control independently the dimensions of core and shell and select individually materials for core and shell for other core-shell type nanoparticles.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Satyam Shukla ◽  
Sandeep Singh Gill ◽  
Navneet Kaur ◽  
H. S. Jatana ◽  
Varun Nehru

Technology scaling below 22 nm has brought several detrimental effects such as increased short channel effects (SCEs) and leakage currents. In deep submicron technology further scaling in gate length and oxide thickness can be achieved by changing the device structure of MOSFET. For 10–30 nm channel length multigate MOSFETs have been considered as most promising devices and FinFETs are the leading multigate MOSFET devices. Process parameters can be varied to obtain the desired performance of the FinFET device. In this paper, evaluation of on-off current ratio (Ion/Ioff), subthreshold swing (SS) and Drain Induced Barrier Lowering (DIBL) for different process parameters, that is, doping concentration (1015/cm3 to 1018/cm3), oxide thickness (0.5 nm and 1 nm), and fin height (10 nm to 40 nm), has been presented for 20 nm triangular FinFET device. Density gradient model used in design simulation incorporates the considerable quantum effects and provides more practical environment for device simulation. Simulation result shows that fin shape has great impact on FinFET performance and triangular fin shape leads to reduction in leakage current and SCEs. Comparative analysis of simulation results has been investigated to observe the impact of process parameters on the performance of designed FinFET.


2006 ◽  
Vol 965 ◽  
Author(s):  
Sung-ho Seo ◽  
Woo-sik Nam ◽  
Jae-seok Kim ◽  
Chang-hyup Shin ◽  
Se-yun Lim ◽  
...  

ABSTRACTRecently, low molecular organic non-volatile memories have been developed as a next generation of non-volatile memory because of nano-meter device-feature size and nano-second access and store-time. We developed a non-volatile memory fabricated with the device structure of Al/ α-NPD/Al nano-crystals surrounded by Al2O3/α-NPD/Al, where α-NPD is N,N'-bis(1-naphthyl)-1,1'biphenyl4-4”diamine. One layer of Al nano-crystals with ∼20 nm-width ∼20 nm length was uniform produced between α-NPD layers, confirmed by 1.2MV high voltage transmission-electron-microscope. This device showed Vth of 3.0 V, Vprogram of 4.3 V, and Verase of 6.3 V. Particularly, this device exhibited an excellent non-volatile memory behavior performing the bi-stability (Iprogrm/Ierase) of >1×102, program/erase cycles of >1×105 and multi-levels. In addition, previous reports about low molecular organic non-volatile memories have showed a bad reproducible memory characteristic. However, this issue was completely solved via isolating Al nano-crystals embedded in α-NPD by O2 plasma oxidation. The uniformity of Vth, Vp, and Ve were 9.91%, 6.94% and 7.92%, respectively. Furthermore, the effect of buffer or barrier layer on non-volatile memory characteristics was investigate to examine the control ability for Vth, Vp, and Ve. The 0.5-nm LiF showed a barrier layer behavior suppressing the bi-stability of non-volatile memory. Otherwise, 15-nm CuPc exhibited a buffer layer behavior enhancing the bi-stability of nonvolatile memory.


2015 ◽  
Vol 618 (1) ◽  
pp. 38-46
Author(s):  
Hwangyu Shin ◽  
Hyeonmi Kang ◽  
Jong-Hyung Kim ◽  
Yun-Fan Wang ◽  
Hayoon Lee ◽  
...  

2007 ◽  
Vol 7 (2) ◽  
pp. 602-609 ◽  
Author(s):  
Zhenling Wang ◽  
Guangzhi Li ◽  
Zewei Quan ◽  
Deyan Kong ◽  
Xiaoming Liu ◽  
...  

Nano-submicrostructured CaWO4, CaWO4 : Pb2+ and CaWO4 : Pb3+ particles were prepared by polyol method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR), thermogravimetry-differential thermal analysis (TG-DTA), photoluminescence (PL), cathodoluminescence (CL) spectra and PL lifetimes. The results of XRD indicate that the as-prepared samples are well crystallized with the scheelite structure of CaWO4. The FE-SEM images illustrate that CaWO4 and CaWO4 : Pb2+ and CaWO4 : Tb3+ powders are composed of spherical particles with sizes around 260, 290, and 190 nm respectively, which are the aggregates of smaller nanoparticles around 10–20 nm. Under the UV light or electron beam excitation, the CaWO4 powders exhibits a blue emission band with a maximum at about 440 nm. When the CaWO4 particles are doped with Pb2+, the intensity of luminescence is enhanced to some extent and the luminescence band maximum is red shifted to 460 nm. Tb3+-doped CaWO4 particles show the characteristic emission of Tb3+ 5D4–7FJ (J = 6 – 3) transitions due to an energy transfer from WO42− groups to Pb3+.


2013 ◽  
Vol 538 ◽  
pp. 58-62 ◽  
Author(s):  
Bao Gai Zhai ◽  
Qing Lan Ma ◽  
Yuan Ming Huang

Trivalent Eu and Dy ions co-doped amorphous strontium aluminate oxide (SrAl2O4:Eu3+Dy3+) were synthesized through solution combustion route. The phase of the synthesized compound was examined with the X-ray diffractometry. The photoluminescence spectra of the amorphous SrAl2O4:Eu3+Dy3+ has shown that the sharp blue emission of Dy3+ at 483 nm, the sharp yellow emission of Dy3+ at 570 nm and the sharp red emission of Eu3+ at 615 nm can be integrated into the broad blue background emission of the amorphous host. The results indicate that the amorphous SrAl2O4 host can provide good environment to tune the emission color for the SrAl2O4:Eu3+Dy3+.


2010 ◽  
Vol 148-149 ◽  
pp. 1607-1610
Author(s):  
Wei Xue Li ◽  
Dun Dong Wang ◽  
Hui Jin ◽  
Jian Feng Dai ◽  
Qing Wang

The Single-walled carbon nanotubes were coated with Ni-P layers by an electroless plating technique. A Ni-P layers are thick and smooth and on individual nanotube with thickness of 20 nm can be obtained after the deposition process. The Single-walled carbon nanotubes were obtained in the suspension of purification solution. The samples have been characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscopy and energy dispersive spectrometry.The coating layers after heat-treatment convert the amorphous Ni-P coated layers into the nanocrystalline Ni-P layers.


Sign in / Sign up

Export Citation Format

Share Document