Improvement of the Vibratory Analysis by Enhancement of Accelerometer Characteristics

2020 ◽  
Vol 18 (1) ◽  
pp. 39-42
Author(s):  
Salah Belkhiri ◽  
Zine Ghemari ◽  
Salah Saad ◽  
Ghania Boudechiche

In this work, the mathematical model suitable for the operating principle of the piezoelectric accelerometer is extracted then this model which connects the accuracy and the measurement error according of the frequency ration and the damping rate is validated by simulation. The model developed makes it possible to improve the performances of the accelerometer such as precision, sensitivity and reliability as well as to propose a new conception of the latter. A comparative study is made to show the importance of our results compared to literature, these results have showed that a suitable and appropriate choice of damping ratio develops the accelerometer parameters and enhances the vibratory analysis technique.

2016 ◽  
Vol 20 (2) ◽  
pp. 81-89
Author(s):  
Monika Gwadera

AbstractThe aim of this paper is to present the adsorption chillers technology. The operating principle of these systems, the adsorbent-adsorbate pairs that are frequently applied and the enhancement techniques that allow improvement of their efficiency are presented. Analysis of the mass transfer and principles of mathematical modeling of such systems are also discussed. In the further part of the text, the results of experimental studies and comparison of these results with calculations based on the mathematical model of adsorption were presented.


2011 ◽  
Vol 105-107 ◽  
pp. 1899-1902 ◽  
Author(s):  
Xiao Wei Zhang ◽  
Xing Hua Li ◽  
Bo Chen

In this paper, the mathematical model with errors for parallel double-joint coordinate measuring machine (CMM) was proposed. The main factor of the impact of circular grating measurement error--radial install eccentric error--was analyzed. The error was measured and the data obtained from measurement was used to curve fitting and form the error compensation formula. Experiments show that the method of error compensation has good usability and accuracy.


2011 ◽  
Vol 291-294 ◽  
pp. 1970-1976
Author(s):  
Shao Qun Zhang ◽  
Jun Hua ◽  
Wei Xu

Through woodworking four-side planer vibration test, this article studiesits dynamic characteristics and dynamic response to identify the vibration magnitudes law of each feed roll shafts of the four-side feed beam; then finds the natural frequency and damping ratio of the feed beam and lathe bed; obtains the mathematical model of feed roll shaft vibration magnitude changing with the feed rate U under different process thicknesses. The analysis of feeding quantity and the rationality of lathe bed from the perspective of vibration design supplies the designs and operation staff with reference data.


2019 ◽  
Vol 970 ◽  
pp. 210-218
Author(s):  
Sergei P. Osipov ◽  
Sergei Chakhlov ◽  
Daniyar Kairalapov ◽  
Oleg Osipov

The mathematical model of the broadband transmission X-ray thickness gauge is developed. The mathematical model consists of sectors: generation and transformation of radiometric signals; equation of transmission X-ray thickness gauge; error estimation of thickness measurement; performance rating. The example of the use of the proposed model to calculate of the transmission X-ray thickness gauge for aluminum items is provided. In the example the dependences of integral mass X-ray attenuation coefficients and the thickness of monitored objects made from aluminum are calculated. The range of optimum measured thickness depending on the maximum X-ray energy was selected, the measurement time to provide the desired thickness measurement error was estimated. The possibility of measuring the thickness of a cooper test object for a wide beam conditions has been experimentally confirmed.


2010 ◽  
Vol 129-131 ◽  
pp. 1098-1103 ◽  
Author(s):  
Tian Hong Luo ◽  
Xin Fu Gan ◽  
Wen Jun Luo

Tamper mechanism is one of the most important parts in all of Asphalt-pavers. In this article, the mathematical model of the tamper system has been established and the stability of the system has been analyzed by using Matlab. According to the operating principle of tamper system of Asphalt-paver, the simulation model of tamper system of Asphalt-paver has been established by using AMESim. The main parameters of the model were set, and then, the simulation results were analyzed, which show that the system is stable and the dynamic performance of system will be improved, when accumulator and PID controller were equipped. Besides, the tamping frequency of hammer is very important to the performance of system. When tamping frequency of hammer over 20HZ, the performance of system will go bad.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Zine Ghemari ◽  
Saad Salah ◽  
Rabah Bourenane

A suitable piezoelectric accelerometer mathematical model is proposed to extract a relationship of motion relative frequency as a function of natural frequency. This relationship helps to select appropriate accelerometer frequency range that minimizes measurement error and improves accuracy. It also allows deducing a formula relating the damping rate and the measurement error of the accelerometer. To protect the accelerometer from failure, the resonance phenomenon effect must be minimized. In order to achieve this objective, physical principle is modeled to find a precise relationship which can determine the accelerometer appropriate frequency range. The developed model was simulated and the obtained results have showed that the selection of the frequency range has minimized the measurement error, increased the accelerometer accuracy, and reduced the resonance effect. Finally a comparative study was conducted to show the importance of the obtained results compared to recent literatures.


1983 ◽  
Vol 105 (3) ◽  
pp. 541-551 ◽  
Author(s):  
A. C. Wang ◽  
T. W. Lee

The theory developed in Part 1 has been applied to the determination of the dynamic response of three typical types of intermittent-motion mechanisms, namely, Geneva mechanisms, ratchets, and escapements. Insight into the behavior of such mechanisms can be obtained by studying the characteristics of the mathematical model and by numerical experiments. The results, whenever possible, are illustrated by computer-plotted graphs. A comparative study with some limited current investigations on the same subject is provided.


Author(s):  
Carlo Ferraresi ◽  
Walter Franco ◽  
Giuseppe Quaglia

The deformable fluid actuators available on the market, i.e. pneumatic muscles and pneumatic springs, are designed to mainly exert compressive or tensile forces. This paper deals with a novel fluid deformable actuator, with three membranes, called BiFAc3, whose particular feature is the ability to exert both tensile and compressive forces. The structure of the actuator is based on three cylindrical coaxial nonisotropic membranes connected to two end plates, whose original shape allows the independent supply of the three internal chambers. The first part of the paper deals with the internal structure and the geometry of the actuator, describes the operating principle and presents a prototype. The second part presents a modelling methodology that can be used to design and analyse the actuator in dynamic applications. The mathematical model of the actuator is based on three different levels of complexity which correspond to three consecutive design stages. The model has been experimentally validated: it is a useful tool for the choice of the actuator’s geometrical dimensions, in order to satisfy specific applicative requirements.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 945
Author(s):  
Peng Guo ◽  
Jiayu Zhang ◽  
Lihui Feng ◽  
Jianmin Cui ◽  
Chaoyang Xing

In order to quantitatively study the interfered output of the accelerometer under an acoustic injection attack, a mathematical model for fitting and predicting the accelerometer output was proposed. With ADXL103 as an example, an acoustic injection attack experiment with amplitude sweeping and frequency sweeping was performed. In the mathematical model, the R-squared coefficient was R2 = 0.9990 in the acoustic injection attack experiment with amplitude sweeping, and R2 = 0.9888 with frequency sweeping. Based on the mathematical model, the dual frequency acoustic injection attack mode was proposed. The difference frequency signal caused by the nonlinear effect was not filtered by the low-pass filter. At a 115 dB sound pressure level, the maximum acceleration bias of the output was 4.4 m/s2 and the maximum amplitude of fluctuation was 4.97 m/s2. Two kinds of methods of prevention against acoustic injection attack were proposed, including changing the damping ratio of the accelerometer and adding a preposition low-pass filter.


Author(s):  
Olexandr Pavlenko ◽  
Serhii Dun ◽  
Maksym Skliar

In any economy there is a need for the bulky goods transportation which cannot be divided into smaller parts. Such cargoes include building structures, elements of industrial equipment, tracked or wheeled construction and agricultural machinery, heavy armored military vehicles. In any case, tractor-semitrailer should provide fast delivery of goods with minimal fuel consumption. In order to guarantee the goods delivery, tractor-semitrailers must be able to overcome the existing roads broken grade and be capable to tow a semi-trailer in off-road conditions. These properties are especially important for military equipment transportation. The important factor that determines a tractor-semitrailer mobility is its gradeability. The purpose of this work is to improve a tractor-semitrailer mobility with tractor units manufactured at PJSC “AutoKrAZ” by increasing the tractor-semitrailer gradeability. The customer requirements for a new tractor are determined by the maximizing the grade to 18°. The analysis of the characteristics of modern tractor-semitrailers for heavy haulage has shown that the highest rate of this grade is 16.7°. The factors determining the limiting gradeability value were analyzed, based on the tractor-semitrailer with a KrAZ-6510TE tractor and a semi-trailer with a full weight of 80 t. It has been developed a mathematical model to investigate the tractor and semi-trailer axles vertical reactions distribution on the tractor-semitrailer friction performances. The mathematical model has allowed to calculate the gradeability value that the tractor-semitrailer can overcome in case of wheels and road surface friction value and the tractive force magnitude from the engine. The mathematical model adequacy was confirmed by comparing the calculations results with the data of factory tests. The analysis showed that on a dry road the KrAZ-6510TE tractor with a 80 t gross weight semitrailer is capable to climb a gradient of 14,35 ° with its coupling mass full use condition. The engine's maximum torque allows the tractor-semitrailer to overcome a gradient of 10.45° It has been determined the ways to improve the design of the KrAZ-6510TE tractor to increase its gradeability. Keywords: tractor, tractor-semitrailer vehicle mobility, tractor-semitrailer vehicle gradeability.


Sign in / Sign up

Export Citation Format

Share Document