Canadian RCM Projected Changes to Extreme Precipitation Characteristics over Canada

2011 ◽  
Vol 24 (10) ◽  
pp. 2565-2584 ◽  
Author(s):  
B. Mladjic ◽  
L. Sushama ◽  
M. N. Khaliq ◽  
R. Laprise ◽  
D. Caya ◽  
...  

Abstract Changes to the intensity and frequency of hydroclimatic extremes can have significant impacts on sectors associated with water resources, and therefore it is relevant to assess their vulnerabilities in a changing climate. This study focuses on the assessment of projected changes to selected return levels of 1-, 2-, 3-, 5-, 7- and 10-day annual (April–September) maximum precipitation amounts, over Canada, using an ensemble of five 30-yr integrations each for current reference (1961–90) and future (2040–71) periods performed with the Canadian Regional Climate Model (CRCM); the future simulations correspond to the A2 Special Report on Emissions Scenarios (SRES) scenario. Two methods, the regional frequency analysis (RFA), which operates at the scale of statistically homogenous units of predefined climatic regions, with the possibility of downscaling to gridcell level, and the individual gridbox analysis (GBA), are used in this study, with the time-slice stationarity assumption. Validation of model simulated 20-, 50- and 100-yr return levels of single- and multiday precipitation extremes against those observed for the 1961–90 period using both the RFA and GBA methods suggest an underestimation of extreme events by the CRCM over most of Canada. The CRCM projected changes, realized with the RFA method at regional scale, to selected return levels for the future (2041–70) period, in comparison to the reference (1961–90) period, suggest statistically significant increases in event magnitudes for 7 out of 10 studied climatic regions. Though the results of the RFA and GBA methods at gridcell level suggest positive changes to studied return levels for most parts of Canada, the results corresponding to the 20-yr return period for the two methods agree better, while the agreement abates with increasing return periods, that is, 50 and 100 yr. It is expected that the increase in return levels of short and longer duration precipitation extremes will have severe implications for various water resource–related development and management activities.

2012 ◽  
Vol 43 (4) ◽  
pp. 341-351 ◽  
Author(s):  
Jonas Olsson ◽  
Ulrika Willén ◽  
Akira Kawamura

Urban hydrological climate change impact assessment requires an assessment of how short-term local precipitation extremes, e.g. expressed as intensity-duration-frequency (IDF) curves, are expected to change in the future. This cannot be done on the basis of regional climate model (RCM) results directly, mainly because of the models' coarse spatial grid and resolution-dependent limitations in process descriptions. In this paper, a stochastic model for downscaling short-term precipitation from RCM grid scale to local (i.e. point) scale is formulated and tested using data from Stockholm, Sweden. In principle, additional RCM variables characterising the weather situation are used to convert from grid box average to local precipitation, and estimate the probability of occurrence in an arbitrary point. Finally, local time series are stochastically simulated and IDF curves derived. The results of the application in Stockholm suggest that: (1) observed IDF-curves may be effectively reproduced by the model; and (2) the future increase of local-scale short-term precipitation extremes may be higher than the predicted increase of short-term extremes on the RCM grid scale.


2014 ◽  
Vol 27 (16) ◽  
pp. 6155-6174 ◽  
Author(s):  
Steven C. Chan ◽  
Elizabeth J. Kendon ◽  
Hayley J. Fowler ◽  
Stephen Blenkinsop ◽  
Nigel M. Roberts ◽  
...  

Abstract Extreme value theory is used as a diagnostic for two high-resolution (12-km parameterized convection and 1.5-km explicit convection) Met Office regional climate model (RCM) simulations. On subdaily time scales, the 12-km simulation has weaker June–August (JJA) short-return-period return levels than the 1.5-km RCM, yet the 12-km RCM has overly large high return levels. Comparisons with observations indicate that the 1.5-km RCM is more successful than the 12-km RCM in representing (multi)hourly JJA very extreme events. As accumulation periods increase toward daily time scales, the erroneous 12-km precipitation extremes become more comparable with the observations and the 1.5-km RCM. The 12-km RCM fails to capture the observed low sensitivity of the growth rate to accumulation period changes, which is successfully captured by the 1.5-km RCM. Both simulations have comparable December–February (DJF) extremes, but the DJF extremes are generally weaker than in JJA at daily or shorter time scales. Case studies indicate that “gridpoint storms” are one of the causes of unrealistic very extreme events in the 12-km RCM. Caution is needed in interpreting the realism of 12-km RCM JJA extremes, including short-return-period events, which have return values closer to observations. There is clear evidence that the 1.5-km RCM has a higher degree of realism than the 12-km RCM in the simulation of JJA extremes.


2019 ◽  
Vol 19 (4) ◽  
pp. 957-971 ◽  
Author(s):  
Peter Berg ◽  
Ole B. Christensen ◽  
Katharina Klehmet ◽  
Geert Lenderink ◽  
Jonas Olsson ◽  
...  

Abstract. Regional climate model simulations have routinely been applied to assess changes in precipitation extremes at daily time steps. However, shorter sub-daily extremes have not received as much attention. This is likely because of the limited availability of high temporal resolution data, both for observations and for model outputs. Here, summertime depth duration frequencies of a subset of the EURO-CORDEX 0.11∘ ensemble are evaluated with observations for several European countries for durations of 1 to 12 h. Most of the model simulations strongly underestimate 10-year depths for durations up to a few hours but perform better at longer durations. The spatial patterns over Germany are reproduced at least partly at a 12 h duration, but all models fail at shorter durations. Projected changes are assessed by relating relative depth changes to mean temperature changes. A strong relationship with temperature is found across different subregions of Europe, emission scenarios and future time periods. However, the scaling varies considerably between different combinations of global and regional climate models, with a spread in scaling of around 1–10 % K−1 at a 12 h duration and generally higher values at shorter durations.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1494
Author(s):  
Bernardo Teufel ◽  
Laxmi Sushama

Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 622
Author(s):  
Tugba Ozturk ◽  
F. Sibel Saygili-Araci ◽  
M. Levent Kurnaz

In this study, projected changes in climate extreme indices defined by the Expert Team on Climate Change Detection and Indices were investigated over Middle East and North Africa. Changes in the daily maximum and minimum temperature- and precipitation- based extreme indices were analyzed for the end of the 21st century compared to the reference period 1971–2000 using regional climate model simulations. Regional climate model, RegCM4.4 was used to downscale two different global climate model outputs to 50 km resolution under RCP4.5 and RCP8.5 scenarios. Results generally indicate an intensification of temperature- and precipitation- based extreme indices with increasing radiative forcing. In particular, an increase in annual minimum of daily minimum temperatures is more pronounced over the northern part of Mediterranean Basin and tropics. High increase in warm nights and warm spell duration all over the region with a pronounced increase in tropics are projected for the period of 2071–2100 together with decrease or no change in cold extremes. According to the results, a decrease in total wet-day precipitation and increase in dry spells are expected for the end of the century.


2014 ◽  
Vol 955-959 ◽  
pp. 3887-3892 ◽  
Author(s):  
Huang He Gu ◽  
Zhong Bo Yu ◽  
Ji Gan Wang

This study projects the future extreme climate changes over Huang-Huai-Hai (3H) region in China using a regional climate model (RegCM4). The RegCM4 performs well in “current” climate (1970-1999) simulations by compared with the available surface station data, focusing on near-surface air temperature and precipitation. Future climate changes are evaluated based on experiments driven by European-Hamburg general climate model (ECHAM5) in A1B future scenario (2070-2099). The results show that the annual temperature increase about 3.4 °C-4.2 °C and the annual precipitation increase about 5-15% in most of 3H region at the end of 21st century. The model predicts a generally less frost days, longer growing season, more hot days, no obvious change in heat wave duration index, larger maximum five-day rainfall, more heavy rain days, and larger daily rainfall intensity. The results indicate a higher risk of floods in the future warmer climate. In addition, the consecutive dry days in Huai River Basin will increase, indicating more serve drought and floods conditions in this region.


2006 ◽  
Vol 54 (6-7) ◽  
pp. 9-15 ◽  
Author(s):  
M. Grum ◽  
A.T. Jørgensen ◽  
R.M. Johansen ◽  
J.J. Linde

That we are in a period of extraordinary rates of climate change is today evident. These climate changes are likely to impact local weather conditions with direct impacts on precipitation patterns and urban drainage. In recent years several studies have focused on revealing the nature, extent and consequences of climate change on urban drainage and urban runoff pollution issues. This study uses predictions from a regional climate model to look at the effects of climate change on extreme precipitation events. Results are presented in terms of point rainfall extremes. The analysis involves three steps: Firstly, hourly rainfall intensities from 16 point rain gauges are averaged to create a rain gauge equivalent intensity for a 25 × 25 km square corresponding to one grid cell in the climate model. Secondly, the differences between present and future in the climate model is used to project the hourly extreme statistics of the rain gauge surface into the future. Thirdly, the future extremes of the square surface area are downscaled to give point rainfall extremes of the future. The results and conclusions rely heavily on the regional model's suitability in describing extremes at time-scales relevant to urban drainage. However, in spite of these uncertainties, and others raised in the discussion, the tendency is clear: extreme precipitation events effecting urban drainage and causing flooding will become more frequent as a result of climate change.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 712
Author(s):  
Mamadou Lamine Mbaye ◽  
Mouhamadou Bamba Sylla ◽  
Moustapha Tall

This study assesses the changes in precipitation (P) and in evapotranspiration (ET) under 1.5 °C and 2.0 °C global warming levels (GWLs) over Senegal in West Africa. A set of twenty Regional Climate Model (RCM) simulations within the Coordinated Regional Downscaling Experiment (CORDEX) following the Representative Concentration Pathways (RCP) 4.5 emission scenario is used. Annual and seasonal changes are computed between climate simulations under 1.5 °C and 2.0 °C warming, with respect to 0.5 °C warming, compared to pre-industrial levels. The results show that annual precipitation is likely to decrease under both magnitudes of warming; this decrease is also found during the main rainy season (July, August, September) only and is more pronounced under 2 °C warming. All reference evapotranspiration calculations, from Penman, Hamon, and Hargreaves formulations, show an increase in the future under the two GWLs, except annual Penman evapotranspiration under the 1.5 °C warming scenario. Furthermore, seasonal and annual water balances (P-ET) generally exhibit a water deficit. This water deficit (up to 180 mm) is more substantial with Penman and Hamon under 2 °C. In addition, analyses of changes in extreme precipitation reveal an increase in dry spells and a decrease in the number of wet days. However, Senegal may face a slight increase in very wet days (95th percentile), extremely wet days (99th), and rainfall intensity in the coming decades. Therefore, in the future, Senegal may experience a decline in precipitation, an increase of evapotranspiration, and a slight increase in heavy rainfall. Such changes could have serious consequences (e.g., drought, flood, etc.) for socioeconomic activities. Thus, strong governmental politics are needed to restrict the global mean temperature to avoid irreversible negative climate change impacts over the country. The findings of this study have contributed to a better understanding of local patterns of the Senegal hydroclimate under the two considered global warming scenarios.


2009 ◽  
Vol 22 (8) ◽  
pp. 1944-1961 ◽  
Author(s):  
Bariş Önol ◽  
Fredrick H. M. Semazzi

Abstract In this study, the potential role of global warming in modulating the future climate over the eastern Mediterranean (EM) region has been investigated. The primary vehicle of this investigation is the Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 3 (ICTP-RegCM3), which was used to downscale the present and future climate scenario simulations generated by the NASA’s finite-volume GCM (fvGCM). The present-day (1961–90; RF) simulations and the future climate change projections (2071–2100; A2) are based on the Intergovernmental Panel on Climate Change (IPCC) greenhouse gas (GHG) emissions. During the Northern Hemispheric winter season, the general increase in precipitation over the northern sector of the EM region is present both in the fvGCM and RegCM3 model simulations. The regional model simulations reveal a significant increase (10%–50%) in winter precipitation over the Carpathian Mountains and along the east coast of the Black Sea, over the Kackar Mountains, and over the Caucasus Mountains. The large decrease in precipitation over the southeastern Turkey region that recharges the Euphrates and Tigris River basins could become a major source of concern for the countries downstream of this region. The model results also indicate that the autumn rains, which are primarily confined over Turkey for the current climate, will expand into Syria and Iraq in the future, which is consistent with the corresponding changes in the circulation pattern. The climate change over EM tends to manifest itself in terms of the modulation of North Atlantic Oscillation. During summer, temperature increase is as large as 7°C over the Balkan countries while changes for the rest of the region are in the range of 3°–4°C. Overall the temperature increase in summer is much greater than the corresponding changes during winter. Presentation of the climate change projections in terms of individual country averages is highly advantageous for the practical interpretation of the results. The consistence of the country averages for the RF RegCM3 projections with the corresponding averaged station data is compelling evidence of the added value of regional climate model downscaling.


2020 ◽  
Vol 12 (4) ◽  
pp. 2959-2970
Author(s):  
Maialen Iturbide ◽  
José M. Gutiérrez ◽  
Lincoln M. Alves ◽  
Joaquín Bedia ◽  
Ruth Cerezo-Mota ◽  
...  

Abstract. Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020).


Sign in / Sign up

Export Citation Format

Share Document