scholarly journals Validation of a Receptor–Dispersion Model Coupled with a Genetic Algorithm Using Synthetic Data

2006 ◽  
Vol 45 (3) ◽  
pp. 476-490 ◽  
Author(s):  
Sue Ellen Haupt ◽  
George S. Young ◽  
Christopher T. Allen

Abstract A methodology for characterizing emission sources is presented that couples a dispersion and transport model with a pollution receptor model. This coupling allows the use of the backward (receptor) model to calibrate the forward (dispersion) model, potentially across a wide range of meteorological conditions. Moreover, by using a receptor model one can calibrate from observations taken in a multisource setting. This approach offers practical advantages over calibrating via single-source artificial release experiments. A genetic algorithm is used to optimize the source calibration factors that couple the two models. The ability of the genetic algorithm to correctly couple these two models is demonstrated for two separate source–receptor configurations using synthetic meteorological and receptor data. The calibration factors underlying the synthetic data are successfully reconstructed by this optimization process. A Monte Carlo technique is used to compute error bounds for the resulting estimates of the calibration factors. By creating synthetic data with random noise, it is possible to quantify the robustness of the model's results in the face of variability. When white noise is incorporated into the synthetic pollutant signal at the receptors, the genetic algorithm is still able to compute the calibration factors of the coupled model up to a signal-to-noise ratio of about 2. Beyond that level of noise, the average of many coupled model optimization runs still provides a reasonable estimate of the calibration factor until the noise is an order of magnitude greater than the signal. The calibration factor linking the dispersion to the receptor model provides an estimate of the uncertainty in the combined monitoring and modeling process. This approach recognizes the mismatch between the ensemble average dispersion modeling technology and matching a single realization time of monitored data.

2007 ◽  
Vol 46 (3) ◽  
pp. 273-287 ◽  
Author(s):  
Christopher T. Allen ◽  
Sue Ellen Haupt ◽  
George S. Young

Abstract This paper extends the approach of coupling a forward-looking dispersion model with a backward model using a genetic algorithm (GA) by incorporating a more sophisticated dispersion model [the Second-Order Closure Integrated Puff (SCIPUFF) model] into a GA-coupled system. This coupled system is validated with synthetic and field experiment data to demonstrate the potential applicability of the coupled model to emission source characterization. The coupled model incorporating SCIPUFF is first validated with synthetic data produced by SCIPUFF to isolate issues related directly to SCIPUFF’s use in the coupled model. The coupled model is successful in characterizing sources even with a moderate amount of white noise introduced into the data. The similarity to corresponding results from previous studies using a more basic model suggests that the GA’s performance is not sensitive to the dispersion model used. The coupled model is then tested using data from the Dipole Pride 26 field tests to determine its ability to characterize actual pollutant measurements despite the stochastic scatter inherent in turbulent dispersion. Sensitivity studies are run on various input parameters to gain insight used to produce a multistage process capable of a higher-quality source characterization than that produced by a single pass. Overall, the coupled model performed well in identifying approximate locations, times, and amounts of pollutant emissions. These model runs demonstrate the coupled model’s potential application to source characterization for real-world problems.


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 579 ◽  
Author(s):  
Ryosuke Oyanagi ◽  
Atsushi Okamoto ◽  
Noriyoshi Tsuchiya

Water–rock interaction in surface and subsurface environments occurs in complex multicomponent systems and involves several reactions, including element transfer. Such kinetic information is obtained by fitting a forward model into the temporal evolution of solution chemistry or the spatial pattern recorded in the rock samples, although geochemical and petrological data are essentially sparse and noisy. Therefore, the optimization of kinetic parameters sometimes fails to converge toward the global minimum due to being trapped in a local minimum. In this study, we simultaneously present a novel framework to estimate multiple reaction-rate constants and the diffusivity of aqueous species from the mineral distribution pattern in a rock by using the reactive transport model coupled with the exchange Monte Carlo method. Our approach can estimate both the maximum likelihood and error of each parameter. We applied the method to the synthetic data, which were produced using a model for silica metasomatism and hydration in the olivine–quartz–H2O system. We tested the robustness and accuracy of our method over a wide range of noise intensities. This methodology can be widely applied to kinetic analyses of various kinds of water–rock interactions.


2019 ◽  
Vol 10 (1) ◽  
pp. 73 ◽  
Author(s):  
Einar Agletdinov ◽  
Dmitry Merson ◽  
Alexei Vinogradov

A novel methodology is proposed to enhance the reliability of detection of low amplitude transients in a noisy time series. Such time series often arise in a wide range of practical situations where different sensors are used for condition monitoring of mechanical systems, integrity assessment of industrial facilities and/or microseismicity studies. In all these cases, the early and reliable detection of possible damage is of paramount importance and is practically limited by detectability of transient signals on the background of random noise. The proposed triggering algorithm is based on a logarithmic derivative of the power spectral density function. It was tested on the synthetic data, which mimics the actual ultrasonic acoustic emission signal recorded continuously with different signal-to-noise ratios (SNR). Considerable advantages of the proposed method over established fixed amplitude threshold and STA/LTA (Short Time Average / Long Time Average) techniques are demonstrated in comparative tests.


2021 ◽  
Vol 14 (9) ◽  
pp. 5987-6003
Author(s):  
Pramod Kumar ◽  
Grégoire Broquet ◽  
Camille Yver-Kwok ◽  
Olivier Laurent ◽  
Susan Gichuki ◽  
...  

Abstract. We present a local-scale atmospheric inversion framework to estimate the location and rate of methane (CH4) and carbon dioxide (CO2) releases from point sources. It relies on mobile near-ground atmospheric CH4 and CO2 mole fraction measurements across the corresponding atmospheric plumes downwind of these sources, on high-frequency meteorological measurements, and on a Gaussian plume dispersion model. The framework exploits the scatter of the positions of the individual plume cross sections, the integrals of the gas mole fractions above the background within these plume cross sections, and the variations of these integrals from one cross section to the other to infer the position and rate of the releases. It has been developed and applied to provide estimates of brief controlled CH4 and CO2 point source releases during a 1-week campaign in October 2018 at the TOTAL experimental platform TADI in Lacq, France. These releases typically lasted 4 to 8 min and covered a wide range of rates (0.3 to 200 g CH4/s and 0.2 to 150 g CO2/s) to test the capability of atmospheric monitoring systems to react fast to emergency situations in industrial facilities. It also allowed testing of their capability to provide precise emission estimates for the application of climate change mitigation strategies. However, the low and highly varying wind conditions during the releases added difficulties to the challenge of characterizing the atmospheric transport over the very short duration of the releases. We present our series of CH4 and CO2 mole fraction measurements using instruments on board a car that drove along roads ∼50 to 150 m downwind of the 40 m × 60 m area for controlled releases along with the estimates of the release locations and rates. The comparisons of these results to the actual position and rate of the controlled releases indicate ∼10 %–40 % average errors (depending on the inversion configuration or on the series of tests) in the estimates of the release rates and ∼30–40 m errors in the estimates of the release locations. These results are shown to be promising, especially since better results could be expected for longer releases and under meteorological conditions more favorable to local-scale dispersion modeling. However, the analysis also highlights the need for methodological improvements to increase the skill for estimating the source locations.


2020 ◽  
Author(s):  
Pramod Kumar ◽  
Grégoire Broquet ◽  
Camille Yver-Kwok ◽  
Olivier Laurent ◽  
Susan Gichuki ◽  
...  

Abstract. We present a local-scale atmospheric inversion framework to estimate the location and rate of methane (CH4) and carbon dioxide (CO2) releases from point sources. It relies on mobile near-ground atmospheric CH4 and CO2 mole fraction measurements across the corresponding atmospheric plumes downwind the sources, on high-frequency meteorological measurements, and a Gaussian plume dispersion model. It exploits the spread of the positions of individual plume cross-sections and the integrals of the gas mole fractions above the background within these plume cross-sections to infer the position and rate of the releases. It has been developed and applied to provide estimates of brief controlled CH4 and CO2 point source releases during a one-week campaign in October 2018 at the TOTAL's experimental platform TADI in Lacq, France. These releases lasted typically 4 to 8 minutes and covered a wide range of rates (0.3 to 200 gCH4/s and 0.2 to 150 gCO2/s) to test the capability of atmospheric monitoring systems to react fast to emergency situations in industrial facilities. It also allowed testing their capability to provide precise emission estimates for the application of climate change mitigation strategies. However, the low and highly varying wind conditions during the releases added difficulties to the challenge of characterizing the atmospheric transport over the very short duration of the releases. We present our series of measurements of CH4 and CO2 mole fractions using instruments onboard a car that drives along the roads ~50 to 150 m downwind the 40 m × 60 m area of controlled releases for each of the releases and the results from the inversions of the release locations and rates. The comparisons of these results to the actual position and rate of the controlled release indicate a 20 %–30 % average error on the release rates and a ~30–40 m errors in the estimates of the release locations. These results are shown to be promising especially since better results could be expected for longer releases and under meteorological conditions more favorable to local scale dispersion modeling.


2011 ◽  
Vol 4 (2) ◽  
pp. 317-324 ◽  
Author(s):  
Y. Koyama ◽  
S. Maksyutov ◽  
H. Mukai ◽  
K. Thoning ◽  
P. Tans

Abstract. This study assesses the advantages of using a coupled atmospheric-tracer transport model, comprising a global Eulerian model and a global Lagrangian particle dispersion model, to improve the reproducibility of tracer-gas variations affected by the near-field surface emissions and transport around observation sites. The ability to resolve variability in atmospheric composition on an hourly time-scale and a spatial scale of several kilometers would be beneficial for analyzing data from continuous ground-based monitoring and from upcoming space-based observations. The coupled model yields an increase in the horizontal resolution of transport and fluxes, and has been tested in regional-scale studies of atmospheric chemistry. By applying the Lagrangian component to the global domain, we extend this approach to the global scale, thereby enabling computationally efficient global inverse modeling and data assimilation. To validate the coupled model, we compare model-simulated CO2 concentrations with continuous observations at three sites: two operated by the National Oceanic and Atmospheric Administration, USA, and one operated by the National Institute for Environmental Studies, Japan. As the goal of this study is limited to introducing the new modeling approach, we selected a transport simulation at these three sites to demonstrate how the model may perform at various geographical areas. The coupled model provides improved agreement between modeled and observed CO2 concentrations in comparison to the Eulerian model. In an area where variability in CO2 concentration is dominated by a fossil fuel signal, the correlation coefficient between modeled and observed concentrations increases by between 0.05 to 0.1 from the original values of 0.5–0.6 achieved with the Eulerian model.


2016 ◽  
Vol 9 (2) ◽  
pp. 749-764 ◽  
Author(s):  
Dmitry A. Belikov ◽  
Shamil Maksyutov ◽  
Alexey Yaremchuk ◽  
Alexander Ganshin ◽  
Thomas Kaminski ◽  
...  

Abstract. We present the development of the Adjoint of the Global Eulerian–Lagrangian Coupled Atmospheric (A-GELCA) model that consists of the National Institute for Environmental Studies (NIES) model as an Eulerian three-dimensional transport model (TM), and FLEXPART (FLEXible PARTicle dispersion model) as the Lagrangian Particle Dispersion Model (LPDM). The forward tangent linear and adjoint components of the Eulerian model were constructed directly from the original NIES TM code using an automatic differentiation tool known as TAF (Transformation of Algorithms in Fortran; http://www.FastOpt.com), with additional manual pre- and post-processing aimed at improving transparency and clarity of the code and optimizing the performance of the computing, including MPI (Message Passing Interface). The Lagrangian component did not require any code modification, as LPDMs are self-adjoint and track a significant number of particles backward in time in order to calculate the sensitivity of the observations to the neighboring emission areas. The constructed Eulerian adjoint was coupled with the Lagrangian component at a time boundary in the global domain. The simulations presented in this work were performed using the A-GELCA model in forward and adjoint modes. The forward simulation shows that the coupled model improves reproduction of the seasonal cycle and short-term variability of CO2. Mean bias and standard deviation for five of the six Siberian sites considered decrease roughly by 1 ppm when using the coupled model. The adjoint of the Eulerian model was shown, through several numerical tests, to be very accurate (within machine epsilon with mismatch around to ±6 e−14) compared to direct forward sensitivity calculations. The developed adjoint of the coupled model combines the flux conservation and stability of an Eulerian discrete adjoint formulation with the flexibility, accuracy, and high resolution of a Lagrangian backward trajectory formulation. A-GELCA will be incorporated into a variational inversion system designed to optimize surface fluxes of greenhouse gases.


2015 ◽  
Vol 8 (7) ◽  
pp. 5983-6019
Author(s):  
D. A. Belikov ◽  
S. Maksyutov ◽  
A. Yaremchuk ◽  
A. Ganshin ◽  
T. Kaminski ◽  
...  

Abstract. We present the development of the Adjoint of the Global Eulerian–Lagrangian Coupled Atmospheric (A-GELCA) model that consists of the National Institute for Environmental Studies (NIES) model as an Eulerian three-dimensional transport model (TM), and FLEXPART (FLEXible PARTicle dispersion model) as the Lagrangian plume diffusion model (LPDM). The tangent and adjoint components of the Eulerian model were constructed directly from the original NIES TM code using an automatic differentiation tool known as TAF (Transformation of Algorithms in Fortran; http://www.FastOpt.com), with additional manual pre- and post-processing aimed at improving the performance of the computing, including MPI (Message Passing Interface). As results, the adjoint of Eulerian model is discrete. Construction of the adjoint of the Lagrangian component did not require any code modification, as LPDMs are able to track a significant number of particles back in time and thereby calculate the sensitivity of observations to the neighboring emissions areas. Eulerian and Lagrangian adjoint components were coupled at the time boundary in the global domain.The results are verified using a series of test experiments. The forward simulation shown the coupled model is effective in reproducing the seasonal cycle and short-term variability of CO2 even in the case of multiple limiting factors, such as high uncertainty of fluxes and the low resolution of the Eulerian model. The adjoint model demonstrates the high accuracy compared to direct forward sensitivity calculations and fast performance. The developed adjoint of the coupled model combines the flux conservation and stability of an Eulerian discrete adjoint formulation with the flexibility, accuracy, and high resolution of a Lagrangian backward trajectory formulation.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhili Wang ◽  
Lei Lin ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

AbstractAnthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.


2021 ◽  
Vol 13 (15) ◽  
pp. 2967
Author(s):  
Nicola Acito ◽  
Marco Diani ◽  
Gregorio Procissi ◽  
Giovanni Corsini

Atmospheric compensation (AC) allows the retrieval of the reflectance from the measured at-sensor radiance and is a fundamental and critical task for the quantitative exploitation of hyperspectral data. Recently, a learning-based (LB) approach, named LBAC, has been proposed for the AC of airborne hyperspectral data in the visible and near-infrared (VNIR) spectral range. LBAC makes use of a parametric regression function whose parameters are learned by a strategy based on synthetic data that accounts for (1) a physics-based model for the radiative transfer, (2) the variability of the surface reflectance spectra, and (3) the effects of random noise and spectral miscalibration errors. In this work we extend LBAC with respect to two different aspects: (1) the platform for data acquisition and (2) the spectral range covered by the sensor. Particularly, we propose the extension of LBAC to spaceborne hyperspectral sensors operating in the VNIR and short-wave infrared (SWIR) portion of the electromagnetic spectrum. We specifically refer to the sensor of the PRISMA (PRecursore IperSpettrale della Missione Applicativa) mission, and the recent Earth Observation mission of the Italian Space Agency that offers a great opportunity to improve the knowledge on the scientific and commercial applications of spaceborne hyperspectral data. In addition, we introduce a curve fitting-based procedure for the estimation of column water vapor content of the atmosphere that directly exploits the reflectance data provided by LBAC. Results obtained on four different PRISMA hyperspectral images are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document