scholarly journals The Key Physical Parameters Governing Frictional Dissipation in a Precipitating Atmosphere

2013 ◽  
Vol 70 (9) ◽  
pp. 2916-2929 ◽  
Author(s):  
A. M. Makarieva ◽  
V. G. Gorshkov ◽  
A. V. Nefiodov ◽  
D. Sheil ◽  
A. D. Nobre ◽  
...  

Abstract Precipitation generates small-scale turbulent air flows—the energy of which ultimately dissipates to heat. The power of this process has previously been estimated to be around 2–4 W m−2 in the tropics: a value comparable in magnitude to the dynamic power of global atmospheric circulation. Here it is suggested that the true value is approximately half the value of this previous estimate. The result reflects a revised evaluation of the mean precipitation pathlength HP. The dependence of HP on surface temperature, relative humidity, temperature lapse rate, and degree of condensation in the ascending air were investigated. These analyses indicate that the degree of condensation, defined as the relative change of the saturated water vapor mixing ratio in the region of condensation, is a major factor determining HP. From this theory the authors develop an estimate indicating that the mean large-scale rate of frictional dissipation associated with total precipitation in the tropics lies between 1 and 2 W m−2 and show empirical evidence in support of this estimate. Under terrestrial conditions frictional dissipation is found to constitute a minor fraction of the dynamic power of condensation-induced atmospheric circulation, which is estimated to be at least 2.5 times larger. However, because HP increases with increasing surface temperature Ts, the rate of frictional dissipation would exceed the power of condensation-induced dynamics, and thus block major circulation, at Ts ≳ 320 K in a moist adiabatic atmosphere.

1973 ◽  
Vol 54 (4) ◽  
pp. 298-306 ◽  
Author(s):  
Pierre Morel ◽  
William Bandeen

The Eole Experiment with 480 constant level balloons released in the Southern Hemisphere is described. Each balloon, floating freely at approximately the 200-mb level, is a precise tracer of the horizontal motion of air masses, the accuracy of which is limited only by the laminated structure of the stratospheric flow, within an rms uncertainty of 1.5 m sec−1. The balloons were found after 2 months to distribute at random over the whole hemisphere outside the tropics, irrespective of their original launching site. Early results of Eulerian and Lagrangian averages of the Eole wind data are given for describing the mean 200-mb zonal and meridional circulations. The effect of the small scale eddies of two-dimensional turbulence has been studied with respect to the relative eddy diffusion of pairs of balloons and the relative dispersion of triangular clusters. New estimates of the rms divergence of the 200-mb flow are given, together with their scale dependence which was found to be a logarithmic law.


2020 ◽  
Author(s):  
Paul Keil ◽  
Hauke Schmidt ◽  
Bjorn Stevens

<p>The tropospheric lapse rate in the tropics follows a moist adiabat quite closely and is mainly set by surface temperature and humidity in the convecting regions. Therefore, warming or biases at the surface are transferred via the moist adiabat to the upper troposphere. However, climate models show large discrepancies in the upper troposphere and recent observed upper tropospheric warming is around 0.5K weaker than predicted by the moist adiabat theory. Here we use the control simulations of the CMIP5 ensemble to show that large differences in the upper troposphere exist in the mean state that are unrelated to inter-model differences in the lower troposphere. In fact, CMIP5 models diverge (positively and negatively) from the moist pseudoadiabat by up to 2K at 300hPa. Precipitation weighted SSTs have recently been used to resolve the discrepancy between models and observations in upper tropospheric warming, but we show that they are not able to explain the differences in the mean state. While it is difficult to exactly depict the reasons for the inter-model spread, we demonstrate how the upper tropospheric lapse rate can deviate from the moist adiabat for the same lower tropospheric state with AMIP experiments. For this we use the ICON-A model, in which we tune convective and microphysical parameters. An improved understanding of the effect of different parameterisations on the models' lapse rates may help to better understand differences in the response to global warming.</p>


2019 ◽  
Vol 19 (8) ◽  
pp. 5661-5678 ◽  
Author(s):  
Tao Xian ◽  
Cameron R. Homeyer

Abstract. Accurate depictions of the tropopause and its changes are important for studies on stratosphere–troposphere exchange and climate change. Here, the fidelity of primary lapse-rate tropopause altitudes and double tropopause frequencies in four modern reanalyses (ERA-Interim, JRA-55, MERRA-2, and CFSR) is examined using global radiosonde observations. In addition, long-term trends (1981–2015) in these tropopause properties are diagnosed in both the reanalyses and radiosondes. It is found that reanalyses reproduce observed tropopause altitudes with little bias (typically less than ±150 m) and error comparable to the model vertical resolution. All reanalyses underestimate the double tropopause frequency (up to 30 % lower than observed), with the largest biases found in JRA-55 and the smallest in CFSR. The underestimates in double tropopause frequency are primarily attributable to the coarse vertical resolution of the reanalyses. Significant increasing trends in both tropopause altitude (40–120 m per decade) and double tropopause frequency (≥3 % per decade) were found in both the radiosonde observations and the reanalyses over the 35-year analysis period (1981–2015). ERA-Interim, JRA-55, and MERRA-2 broadly reproduce the patterns and signs of observed significant trends, while CFSR is inconsistent with the remaining datasets. Trends were diagnosed in both the native Eulerian coordinate system of the reanalyses (fixed longitude and latitude) and in a coordinate system where latitude is defined relative to the mean latitude of the tropopause break (the discontinuity in tropopause altitude between the tropics and extratropics) in each hemisphere. The coordinate relative to the tropopause break facilitates the evaluation of tropopause behavior within the tropical and extratropical reservoirs and revealed significant differences in trend estimates compared to the traditional Eulerian analysis. Notably, increasing tropopause altitude trends were found to be of greater magnitude in coordinates relative to the tropopause break, and increasing double tropopause frequency trends were found to occur primarily poleward of the tropopause break in each hemisphere.


2013 ◽  
Vol 71 (1) ◽  
pp. 177-194 ◽  
Author(s):  
Elizabeth A. Barnes ◽  
David W. J. Thompson

Abstract Do barotropic or baroclinic eddy feedbacks dominate the atmospheric circulation response to mechanical forcing? To address this question, barotropic torques are imposed over a range of latitudes in both an idealized general circulation model (GCM) and a barotropic model. The GCM includes both baroclinic and barotropic feedbacks. The barotropic model is run in two configurations: 1) only barotropic feedbacks are present and 2) a baroclinic-like feedback is added by allowing the stirring region to move with the jet. The relationship between the latitude of the forcing and the response is examined by systematically shifting the torques between the tropics and the pole. The importance of the mean state is investigated by varying the position of the control jet. Five main findings are presented: 1) Barotropic feedbacks alone are capable of producing the structure of the GCM response to mechanical forcing but are not capable of accounting for its full magnitude. 2) Baroclinic processes generally increase the magnitude of the response but do not strongly influence its structure. 3) For a given forcing, the largest response in all model configurations occurs 5°–10° poleward of the forcing latitude. 4) The maximum response occurs when the forcing is located approximately 10° poleward of the control jet. 5) The circulation response weakens as the mean jet is found at higher latitudes in all model configurations.


2012 ◽  
Vol 12 (5) ◽  
pp. 11567-11594 ◽  
Author(s):  
I. Folkins

Abstract. In actively convecting regions of the tropics, the lower troposphere is significantly less stable than predicted by a moist pseudoadiabat. This anomalous variation in lapse rate occurs between the boundary layer inversion (~2 km) and the melting level (~5 km), and has been attributed to mesoscale downdrafts that develop below precipitating stratiform anvil clouds. We use an 11 yr record (1998–2008) from five Western Tropical Pacific radiosonde stations in the Stratospheric Processes and their Role in Climate (SPARC) archive, to determine the response of this stability anomaly to changes in monthly mean surface temperature. We find that the stability anomaly shifts upward when the surface temperature increases, by an amount roughly equal to the upward displacement of the melting level. It is likely that this change in lower tropospheric stability is associated with increases in the height of cumulus congestus clouds, in the vertical distance through which stratiform precipitation falls through cloud free air, and in the vertical wavelength of the stratiform heating mode.


2020 ◽  
Vol 84 ◽  
pp. 127-140
Author(s):  
BM Gaas ◽  
JW Ammerman

Leucine aminopeptidase (LAP) is one of the enzymes involved in the hydrolysis of peptides, and is sometimes used to indicate potential nitrogen limitation in microbes. Small-scale variability has the potential to confound interpretation of underlying patterns in LAP activity in time or space. An automated flow-injection analysis instrument was used to address the small-scale variability of LAP activity within contiguous regions of the Hudson River plume (New Jersey, USA). LAP activity had a coefficient of variation (CV) of ca. 0.5 with occasional values above 1.0. The mean CVs for other biological parameters—chlorophyll fluorescence and nitrate concentration—were similar, and were much lower for salinity. LAP activity changed by an average of 35 nmol l-1 h-1 at different salinities, and variations in LAP activity were higher crossing region boundaries than within a region. Differences in LAP activity were ±100 nmol l-1 h-1 between sequential samples spaced <10 m apart. Variogram analysis indicated an inherent spatial variability of 52 nmol l-1 h-1 throughout the study area. Large changes in LAP activity were often associated with small changes in salinity and chlorophyll fluorescence, and were sensitive to the sampling frequency. This study concludes that LAP measurements in a sample could realistically be expected to range from zero to twice the average, and changes between areas or times should be at least 2-fold to have some degree of confidence that apparent patterns (or lack thereof) in activity are real.


2021 ◽  
pp. 112067212110237
Author(s):  
Ari Leshno ◽  
Ori Stern ◽  
Yaniv Barkana ◽  
Noa Kapelushnik ◽  
Reut Singer ◽  
...  

Purpose: Accumulating evidence suggests that neuroinflammation and immune response are part of the sequence of pathological events leading to optic nerve damage in glaucoma. Changes in tissue temperature due to inflammation can be measured by thermographic imaging. We investigated the ocular surface temperature (OST) profile of glaucomatous eyes to better understand the pathophysiology of these conditions. Methods: Subjects diagnosed with glaucoma (primary open angle glaucoma [POAG] or pseudo exfoliation glaucoma [PXFG]) treated at the Sam Rothberg Glaucoma Center (11/2019–11/2020.) were recruited. Healthy subjects with no ocular disease served as controls. The Therm-App thermal imaging camera was used for OST acquisition. Room and body temperatures were recorded, and the mean temperatures of the medial cantus, lateral cantus, and cornea were calculated with image processing software. Results: Thermographic images were obtained from 52 subjects (52 eyes: 25 POAG and 27 PXFG) and 66 controls (66 eyes). Eyes with glaucoma had a significantly higher OST compared to controls (mean 0.9 ± 0.3°C, p < 0.005). The difference between the two groups remained significant after adjustment for age, sex, intraocular pressure (IOP) and room and body temperatures. Lens status and topical IOP-lowering medication did not significantly affect OST. A subgroup analysis revealed that the OST was higher among eyes with POAG compared to eyes with PXFG, but not significantly. Conclusions: Differences in the OST between glaucomatous and normal eyes strengthens current thinking that inflammation affects the pathophysiology of glaucoma. Longitudinal studies are warranted to establish the prognostic value of thermographic evaluations in these patients.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


2020 ◽  
Vol 33 (3) ◽  
pp. 847-865 ◽  
Author(s):  
B. Yu ◽  
H. Lin ◽  
V. V. Kharin ◽  
X. L. Wang

AbstractThe interannual variability of wintertime North American surface temperature extremes and its generation and maintenance are analyzed in this study. The leading mode of the temperature extreme anomalies, revealed by empirical orthogonal function (EOF) analyses of December–February mean temperature extreme indices over North America, is characterized by an anomalous center of action over western-central Canada. In association with the leading mode of temperature extreme variability, the large-scale atmospheric circulation features an anomalous Pacific–North American (PNA)-like pattern from the preceding fall to winter, which has important implications for seasonal prediction of North American temperature extremes. A positive PNA pattern leads to more warm and fewer cold extremes over western-central Canada. The anomalous circulation over the PNA sector drives thermal advection that contributes to temperature anomalies over North America, as well as a Pacific decadal oscillation (PDO)-like sea surface temperature (SST) anomaly pattern in the midlatitude North Pacific. The PNA-like circulation anomaly tends to be supported by SST warming in the tropical central-eastern Pacific and a positive synoptic-scale eddy vorticity forcing feedback on the large-scale circulation over the PNA sector. The leading extreme mode–associated atmospheric circulation patterns obtained from the observational and reanalysis data, together with the anomalous SST and synoptic eddy activities, are reasonably well simulated in most CMIP5 models and in the multimodel mean. For most models considered, the simulated patterns of atmospheric circulation, SST, and synoptic eddy activities have lower spatial variances than the corresponding observational and reanalysis patterns over the PNA sector, especially over the North Pacific.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ivana Sušanj ◽  
Nevenka Ožanić ◽  
Ivan Marović

In some situations, there is no possibility of hazard mitigation, especially if the hazard is induced by water. Thus, it is important to prevent consequences via an early warning system (EWS) to announce the possible occurrence of a hazard. The aim and objective of this paper are to investigate the possibility of implementing an EWS in a small-scale catchment and to develop a methodology for developing a hydrological prediction model based on an artificial neural network (ANN) as an essential part of the EWS. The methodology is implemented in the case study of the Slani Potok catchment, which is historically recognized as a hazard-prone area, by establishing continuous monitoring of meteorological and hydrological parameters to collect data for the training, validation, and evaluation of the prediction capabilities of the ANN model. The model is validated and evaluated by visual and common calculation approaches and a new evaluation for the assessment. This new evaluation is proposed based on the separation of the observed data into classes based on the mean data value and the percentages of classes above or below the mean data value as well as on the performance of the mean absolute error.


Sign in / Sign up

Export Citation Format

Share Document