scholarly journals Height increase of the melting level stability anomaly in the tropics

2012 ◽  
Vol 12 (5) ◽  
pp. 11567-11594 ◽  
Author(s):  
I. Folkins

Abstract. In actively convecting regions of the tropics, the lower troposphere is significantly less stable than predicted by a moist pseudoadiabat. This anomalous variation in lapse rate occurs between the boundary layer inversion (~2 km) and the melting level (~5 km), and has been attributed to mesoscale downdrafts that develop below precipitating stratiform anvil clouds. We use an 11 yr record (1998–2008) from five Western Tropical Pacific radiosonde stations in the Stratospheric Processes and their Role in Climate (SPARC) archive, to determine the response of this stability anomaly to changes in monthly mean surface temperature. We find that the stability anomaly shifts upward when the surface temperature increases, by an amount roughly equal to the upward displacement of the melting level. It is likely that this change in lower tropospheric stability is associated with increases in the height of cumulus congestus clouds, in the vertical distance through which stratiform precipitation falls through cloud free air, and in the vertical wavelength of the stratiform heating mode.

2013 ◽  
Vol 13 (3) ◽  
pp. 1167-1176 ◽  
Author(s):  
I. Folkins

Abstract. On short timescales, the effect of deep convection on the tropical atmosphere is to heat the upper troposphere and cool the lower troposphere. This stratiform temperature response to deep convection gives rise to a local maximum in stability near the melting level. We use temperature measurements from five radiosonde stations in the Western Tropical Pacific, from the Stratospheric Processes and their Role in Climate (SPARC) archive, to examine the response of this mid-tropospheric stability maximum to changes in surface temperature. We find that the height of the stability maximum increases when the surface temperature increases, by an amount roughly equal to the upward displacement of the 0 °C melting level. Although this response was determined using monthly mean temperature anomalies from an 10 yr record (1999–2008), we use model results to show that a similar response should also be expected on longer timescales.


2009 ◽  
Vol 22 (23) ◽  
pp. 6437-6455 ◽  
Author(s):  
Ian Folkins

Abstract The author describes a one-dimensional cloud model designed to investigate the relationships between stratiform downdrafts, congestus outflow, stability, and relative humidity in the tropical lower troposphere. In the tropics, the climatological lapse rate varies with height below the melting level in a way that is inconsistent with the assumptions of either moist pseudoadiabatic or reversible adiabatic ascent. This anomalous variation is referred to as the melting-level stability anomaly (MLSA). It is argued that the MLSA is caused by a transition from static to dynamic downdrafts at the melting level. Above the melting level, evaporation of precipitation cools and moistens the tropical atmosphere but does not generate downdraft parcels with sufficient negative buoyancy to descend between model levels. Below the melting level, the evaporative cooling associated with stratiform precipitation is strong enough to overcome the stability of the atmosphere and generate a convective-scale circulation. The vertical descent within these downdrafts induces a compensatory ascent in the background atmosphere that changes the overall cooling-to-moistening downdraft ratio. The inclusion of this stratiform downdraft circulation brings the modeled lapse rate and relative humidity profiles into simultaneous agreement with observations. The transition from static to dynamic downdrafts is triggered, in the model, by imposed increases in the amount of rain falling outside clouds, in the out-of-cloud rain rate, and in the vertical coherence of the rain shafts. The destabilization of the lower tropical atmosphere triggered by the stratiform circulation affects the development of convective clouds. In particular, the melting-level stability anomaly increases detrainment near the melting level and gives rise to the congestus mode.


2013 ◽  
Vol 70 (9) ◽  
pp. 2916-2929 ◽  
Author(s):  
A. M. Makarieva ◽  
V. G. Gorshkov ◽  
A. V. Nefiodov ◽  
D. Sheil ◽  
A. D. Nobre ◽  
...  

Abstract Precipitation generates small-scale turbulent air flows—the energy of which ultimately dissipates to heat. The power of this process has previously been estimated to be around 2–4 W m−2 in the tropics: a value comparable in magnitude to the dynamic power of global atmospheric circulation. Here it is suggested that the true value is approximately half the value of this previous estimate. The result reflects a revised evaluation of the mean precipitation pathlength HP. The dependence of HP on surface temperature, relative humidity, temperature lapse rate, and degree of condensation in the ascending air were investigated. These analyses indicate that the degree of condensation, defined as the relative change of the saturated water vapor mixing ratio in the region of condensation, is a major factor determining HP. From this theory the authors develop an estimate indicating that the mean large-scale rate of frictional dissipation associated with total precipitation in the tropics lies between 1 and 2 W m−2 and show empirical evidence in support of this estimate. Under terrestrial conditions frictional dissipation is found to constitute a minor fraction of the dynamic power of condensation-induced atmospheric circulation, which is estimated to be at least 2.5 times larger. However, because HP increases with increasing surface temperature Ts, the rate of frictional dissipation would exceed the power of condensation-induced dynamics, and thus block major circulation, at Ts ≳ 320 K in a moist adiabatic atmosphere.


2020 ◽  
Author(s):  
Paul Keil ◽  
Hauke Schmidt ◽  
Bjorn Stevens

<p>The tropospheric lapse rate in the tropics follows a moist adiabat quite closely and is mainly set by surface temperature and humidity in the convecting regions. Therefore, warming or biases at the surface are transferred via the moist adiabat to the upper troposphere. However, climate models show large discrepancies in the upper troposphere and recent observed upper tropospheric warming is around 0.5K weaker than predicted by the moist adiabat theory. Here we use the control simulations of the CMIP5 ensemble to show that large differences in the upper troposphere exist in the mean state that are unrelated to inter-model differences in the lower troposphere. In fact, CMIP5 models diverge (positively and negatively) from the moist pseudoadiabat by up to 2K at 300hPa. Precipitation weighted SSTs have recently been used to resolve the discrepancy between models and observations in upper tropospheric warming, but we show that they are not able to explain the differences in the mean state. While it is difficult to exactly depict the reasons for the inter-model spread, we demonstrate how the upper tropospheric lapse rate can deviate from the moist adiabat for the same lower tropospheric state with AMIP experiments. For this we use the ICON-A model, in which we tune convective and microphysical parameters. An improved understanding of the effect of different parameterisations on the models' lapse rates may help to better understand differences in the response to global warming.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


2018 ◽  
Vol 10 (10) ◽  
pp. 1617 ◽  
Author(s):  
Yun Qin ◽  
Guoyu Ren ◽  
Tianlin Zhai ◽  
Panfeng Zhang ◽  
Kangmin Wen

Land surface temperature (LST) is an important parameter in the study of the physical processes of land surface. Understanding the surface temperature lapse rate (TLR) can help to reveal the characteristics of mountainous climates and regional climate change. A methodology was developed to calculate and analyze land-surface TLR in China based on grid datasets of MODIS LST and digital elevation model (DEM), with a formula derived on the basis of the analysis of the temperature field and the height field, an image enhancement technique used to calculate gradient, and the fuzzy c-means (FCM) clustering applied to identify the seasonal pattern of the TLR. The results of the analysis through the methodology showed that surface temperature vertical gradient inversion widely occurred in Northeast, Northwest, and North China in winter, especially in the Xinjiang Autonomous Region, the northern and the western parts of the Greater Khingan Mountains, the Lesser Khingan Mountains, and the northern area of Northwest and North China. Summer generally witnessed the steepest TLR among the four seasons. The eastern Tibetan Plateau showed a distinctive seasonal pattern, where the steepest TLR happened in winter and spring, with a shallower TLR in summer. Large seasonal variations of TLR could be seen in Northeast China, where there was a steep TLR in spring and summer and a strong surface temperature vertical gradient inversion in winter. The smallest seasonal variation of TLR happened in Central and Southwest China, especially in the Ta-pa Mountains and the Qinling Mountains. The TLR at very high altitudes (>5 km) was usually steeper than at low altitudes, in all months of the year.


2019 ◽  
Author(s):  
Pierre Gentine ◽  
Adam Massmann ◽  
Benjamin R. Lintner ◽  
Sayed Hamed Alemohammad ◽  
Rong Fu ◽  
...  

Abstract. The continental tropics play a leading role in the terrestrial water and carbon cycles. Land–atmosphere interactions are integral in the regulation of surface energy, water and carbon fluxes across multiple spatial and temporal scales over tropical continents. We review here some of the important characteristics of tropical continental climates and how land–atmosphere interactions regulate them. Along with a wide range of climates, the tropics manifest a diverse array of land–atmosphere interactions. Broadly speaking, in tropical rainforests, light and energy are typically more limiting than precipitation and water supply for photosynthesis and evapotranspiration; whereas in savanna and semi-arid regions water is the critical regulator of surface fluxes and land–atmosphere interactions. We discuss the impact of the land surface, how it affects shallow clouds and how these clouds can feedback to the surface by modulating surface radiation. Some results from recent research suggest that shallow clouds may be especially critical to land–atmosphere interactions as these regulate the energy budget and moisture transport to the lower troposphere, which in turn affects deep convection. On the other hand, the impact of land surface conditions on deep convection appear to occur over larger, non-local, scales and might be critically affected by transitional regions between the climatologically dry and wet tropics.


2020 ◽  
Author(s):  
Tongwen Wu ◽  
Rucong Yu ◽  
Yixiong Lu ◽  
Weihua Jie ◽  
Yongjie Fang ◽  
...  

Abstract. BCC-CSM2-HR is a high-resolution version of the Beijing Climate Center (BCC) Climate System Model. Its development is on the basis of the medium-resolution version BCC-CSM2-MR which is the baseline for BCC participation to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This study documents the high-resolution model, highlights major improvements in the representation of atmospheric dynamic core and physical processes. BCC-CSM2-HR is evaluated for present-day climate simulations from 1971 to 2000, which are performed under CMIP6-prescribed historical forcing, in comparison with its previous medium-resolution version BCC-CSM2-MR. We focus on basic atmospheric mean states over the globe and variabilities in the tropics including the tropic cyclones (TCs), the El Niño–Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and the quasi-biennial oscillation (QBO) in the stratosphere. It is shown that BCC-CSM2-HR keeps well the global energy balance and can realistically reproduce main patterns of atmosphere temperature and wind, precipitation, land surface air temperature and sea surface temperature. It also improves in the spatial patterns of sea ice and associated seasonal variations in both hemispheres. The bias of double intertropical convergence zone (ITCZ), obvious in BCC-CSM2-MR, is almost disappeared in BCC-CSM2-HR. TC activity in the tropics is increased with resolution enhanced. The cycle of ENSO, the eastward propagative feature and convection intensity of MJO, the downward propagation of QBO in BCC-CSM2-HR are all in a better agreement with observation than their counterparts in BCC-CSM2-MR. We also note some weakness in BCC-CSM2-HR, such as the excessive cloudiness in the eastern basin of the tropical Pacific with cold Sea Surface Temperature (SST) biases and the insufficient number of tropical cyclones in the North Atlantic.


2005 ◽  
Vol 18 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Joseph Egger ◽  
Klaus-Peter Hoinka

Abstract Earlier analyses of the annual cycle of the axial angular momentum (AAM) are extended to include mass flows and vertical transports as observed, and to establish angular momentum budgets for various control volumes, using the European Centre for Medium-Range Forecasts (ECMWF) Re-Analyses (ERA) for the years 1979–92, transformed to height coordinates. In particular, the role of the torques is examined. The annual cycle of the zonally averaged angular momentum is large in the latitude belt 20° ⩽ |ϕ| ⩽ 45°, with little attenuation in the vertical up to a height of ∼12 km. The oscillation of the mass term (AAM due to the earth’s rotation) dominates in the lower troposphere, but that of the wind term (relative AAM) is more important elsewhere. The cycle of the friction torque as related to the trade winds prevails in the Tropics. Mountain torque and friction torque are equally important in the extratropical latitudes of the Northern Hemisphere. The annual and the semiannual cycle of the global angular momentum are in good balance with the global mountain and friction torques. The addition of the global gravity wave torque destroys this agreement. The transports must be adjusted if budgets of domains of less than global extent are to be considered. Both a streamfunction, representing the nondivergent part of the fluxes, and a flux potential, describing the divergences/convergences, are determined. The streamfunction pattern mainly reflects the seasonal shift of the Hadley cell. The flux potential links the annual oscillations of the angular momentum with the torques. It is concluded that the interaction of the torques with the angular momentum is restricted to the lower troposphere, in particular, in the Tropics. The range of influence is deeper in the Northern Hemisphere than in the Southern Hemisphere, presumably because of the mountains. The angular momentum cycle in the upper troposphere and stratosphere is not affected by the torques and reflects interhemispheric flux patterns. Budgets for the polar as well as for the midlatitude domains show that fluxes in the stratosphere are important.


2021 ◽  
pp. 1-61
Author(s):  
Jesse Norris ◽  
Alex Hall ◽  
J. David Neelin ◽  
Chad W. Thackeray ◽  
Di Chen

AbstractDaily and sub-daily precipitation extremes in historical Coupled-Model-Intercomparison-Project-Phase-6 (CMIP6) simulations are evaluated against satellite-based observational estimates. Extremes are defined as the precipitation amount exceeded every x years, ranging from 0.01–10, encompassing the rarest events that are detectable in the observational record without noisy results. With increasing temporal resolution there is an increased discrepancy between models and observations: for daily extremes the multi-model median underestimates the highest percentiles by about a third, and for 3-hourly extremes by about 75% in the tropics. The novelty of the current study is that, to understand the model spread, we evaluate the 3-D structure of the atmosphere when extremes occur. In midlatitudes, where extremes are simulated predominantly explicitly, the intuitive relationship exists whereby higher-resolution models produce larger extremes (r=–0.49), via greater vertical velocity. In the tropics, the convective fraction (the fraction of precipitation simulated directly from the convective scheme) is more relevant. For models below 60% convective fraction, precipitation amount decreases with convective fraction (r=–0.63), but above 75% convective fraction, this relationship breaks down. In the lower-convective-fraction models, there is more moisture in the lower troposphere, closer to saturation. In the higher-convective-fraction models, there is deeper convection and higher cloud tops, which appears to be more physical. Thus, the low-convective models are mostly closer to the observations of extreme precipitation in the tropics, but likely for the wrong reasons. These inter-model differences in the environment in which extremes are simulated hold clues into how parameterizations could be modified in general circulation models to produce more credible 21st-Century projections.


Sign in / Sign up

Export Citation Format

Share Document