A CONUS-wide Standardized Precipitation-Evapotranspiration Index for Major US Row Crops

Author(s):  
Peter E. Goble ◽  
Rebecca A. Bolinger ◽  
Russ S. Schumacher

AbstractAgricultural droughts afflicting the contiguous United States (CONUS) are serious and costly natural hazards. Widespread damage to a single cash crop may be crippling to rural communities that produce it. While drought is insidious in nature, drought indices derived from meteorological data and drought impact reports both provide essential guidance to decision makers about the location and intensity of developing and ongoing droughts. However, response to dry meteorological conditions is not consistent from one crop type to the next, making crop-specific drought appraisal difficult using weather data alone. Additionally, drought impact reports are often subjective, latent, or both. To rectify this, we developed drought indices using meteorological data, and phenological information for the row crops most commonly grown over CONUS: corn, soybeans, and winter wheat. These are referred to as crop-specific standardized precipitation-evapotranspiration indices (CSPEIs). CSPEIs correlate more closely with end-of-season yields than traditional meteorological indicators for the eastern two thirds of CONUS for corn, and offer an advantage in predicting winter wheat yields for the High Plains. CSPEIs do not always explain a higher fraction of variance than traditional meteorological indicators. In such cases, results provide insight on which meteorological indicators to use to most effectively supplement impacts information.

2011 ◽  
Vol 19 (4) ◽  
pp. 860-865
Author(s):  
Xi-Yan KANG ◽  
Guang-Qin GU ◽  
Yin-Shan SHI ◽  
Guo-Qiang TIAN ◽  
Yong-Li GU

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 802
Author(s):  
Kristian Skeie ◽  
Arild Gustavsen

In building thermal energy characterisation, the relevance of proper modelling of the effects caused by solar radiation, temperature and wind is seen as a critical factor. Open geospatial datasets are growing in diversity, easing access to meteorological data and other relevant information that can be used for building energy modelling. However, the application of geospatial techniques combining multiple open datasets is not yet common in the often scripted workflows of data-driven building thermal performance characterisation. We present a method for processing time-series from climate reanalysis and satellite-derived solar irradiance services, by implementing land-use, and elevation raster maps served in an elevation profile web-service. The article describes a methodology to: (1) adapt gridded weather data to four case-building sites in Europe; (2) calculate the incident solar radiation on the building facades; (3) estimate wind and temperature-dependent infiltration using a single-zone infiltration model and (4) including separating and evaluating the sheltering effect of buildings and trees in the vicinity, based on building footprints. Calculations of solar radiation, surface wind and air infiltration potential are done using validated models published in the scientific literature. We found that using scripting tools to automate geoprocessing tasks is widespread, and implementing such techniques in conjunction with an elevation profile web service made it possible to utilise information from open geospatial data surrounding a building site effectively. We expect that the modelling approach could be further improved, including diffuse-shading methods and evaluating other wind shelter methods for urban settings.


2021 ◽  
pp. 1-38
Author(s):  
Hailie Suk ◽  
Ayushi Sharma ◽  
Anand Balu Nellippallil ◽  
Ashok Das ◽  
John Hall

Abstract The quality of life (QOL) in rural communities is improved through electrification. Microgrids can provide electricity in areas where grid access to electricity is infeasible. Still, insufficient power capacity hinders the very progress that microgrids promote. Therefore, we propose a decision-making framework to manage power distribution based on its impact on the rural QOL. Parameters are examined in this paper to represent the QOL pertaining to water, safety, education, and leisure/social activities. Each parameter is evaluated based on condition, community importance, and energy dependence. A solution for power allocation is developed by executing the compromise decision support problem (cDSP) and exploring the solution space. Energy loads, such as those required for powering water pumps, streetlamps, and household devices are prioritized in the context of the QOL. The technique also allows decision-makers to update the power distribution scheme as the dynamics between energy production and demand change over time. In this paper, we propose a framework for connecting QOL and power management. The flexibility of the approach is demonstrated using a problem with varying scenarios that may be time-dependent. The work enables sustainable energy solutions that can evolve with community development.


2019 ◽  
Vol 111 ◽  
pp. 06056
Author(s):  
Kuo-Tsang Huang ◽  
Yu-Teng Weng ◽  
Ruey-Lung Hwang

These future building energy studies mainly stem from hourly based dynamic building simulation results with the future weather data. The reliability of the future building energy forecast heavily relies on the accuracy of these future weather data. The global circulation models (GCMs) provided by IPCC are the major sources for constructing future weather data. However, there are uncertainties existed among them even with the same climate change scenarios. There is a need to develop a method on how to select the suitable GCM for local application. This research firstly adopted principal component analysis (PCA) method in choosing the suitable GCM for application in Taiwan, and secondly the Taiwanese hourly future meteorological data sets were constructed based on the selected GCM by morphing method. Thirdly, the future cooling energy consumption of an actual office building in the near (2011-2040), the mid (2041-2070), and the far future (2071-2100), were analysed. The results show that NorESM1-M GCM has the lowest root mean square error (RMSE) as opposed to the other GCMs, and was identified as the suitable GCM for further future climate generation processing. The building simulation against the future weather datasets revealed that the average cooling energy use intensity (EUIc) in Taipei will be increased by 12%, 17%, and 34% in the 2020s, 2050s, and 2080s, respectively, as compared to the current climate.


2014 ◽  
Vol 2 (12) ◽  
pp. 7583-7620 ◽  
Author(s):  
S. Bachmair ◽  
I. Kohn ◽  
K. Stahl

Abstract. Current drought monitoring and early warning systems use different indicators for monitoring drought conditions and apply different indicator thresholds and rules for assigning drought intensity classes or issue warnings or alerts. Nevertheless, there is little knowledge on the meaning of different hydro-meteorologic indicators for impact occurrence on the ground. To date, there have been very few attempts to systematically characterize the indicator–impact-relationship owing to the sparse and patchy data for ground truthing hydro-meteorologic variables. The newly established European Drought Impact report Inventory (EDII) offers the possibility to investigate this linkage. The aim of this study was to explore the link between hydro-meteorologic indicators and drought impacts for the case study area Germany and thus to test the potential of qualitative impact data for evaluating the performance of drought indicators. As drought indicators two climatological drought indices as well as streamflow and groundwater level percentiles were selected. Linkage was assessed though data visualization and correlation analysis between monthly timeseries of indicator–impact data at the federal state level, and between spatial patterns for selected drought events. The analysis clearly revealed a significant moderate to strong correlation for some states and drought events allowing for an intercomparison of the performance of different drought indicators. While several commonalities could be identified regarding "best" indicator, indicator metric, and time-scale of climatic anomaly, the analysis also exposed differences among federal states and drought events, suggesting that the linkage is time-variant and region specific to some degree. Concerning thresholds associated with drought impact onset, we found that no single "best" threshold value can be identified but impacts occur within a range of indicator values. While the findings strongly depend on data and may change with a growing number of EDII entries in the future, this study clearly demonstrates the feasibility of ground truthing hydro-meteorologic variables with text-based impact reports and highlights the value of impact reporting as a tool for monitoring drought conditions.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12154
Author(s):  
Jiahui Guo ◽  
Xionghui Bai ◽  
Weiping Shi ◽  
Ruijie Li ◽  
Xingyu Hao ◽  
...  

Freezing injury is one of the main restriction factors for winter wheat production, especially in the northern part of the Winter Wheat Region in China. It is very important to assess the risk of winter wheat-freezing injury. However, most of the existing climate models are complex and cannot be widely used. In this study, Zunhua which is located in the northern boundary of Winter Wheat Region in China is selected as research region, based on the winter meteorological data of Zunhua from 1956 to 2016, seven freezing disaster-causing factors related to freezing injury were extracted to formulated the freezing injury index (FII) of wheat. Referring to the historical wheat-freezing injury in Zunhua and combining with the cold resistance identification data of the National Winter Wheat Variety Regional Test (NWWVRT), consistency between the FII and the actual freezing injury situation was tested. Furthermore, the occurrence law of freezing injury in Zunhua during the past 60 years was analyzed by Morlet wavelet analyze, and the risk of freezing injury in the short term was evaluated. Results showed that the FII can reflect the occurrence of winter wheat-freezing injury in Zunhua to a certain extent and had a significant linear correlation with the dead tiller rate of wheat (P = 0.014). The interannual variation of the FII in Zunhua also showed a significant downward trend (R2 = 0.7412). There are two cycles of freezing injury in 60 years, and it showed that there’s still exist a high risk in the short term. This study provides reference information for the rational use of meteorological data for winter wheat-freezing injury risk assessment.


2013 ◽  
Vol 3 ◽  
pp. 106-113
Author(s):  
M.H. Ali ◽  
I. Abustan

Many regions of the world face the challenge to ensure high yield with limited water supply. This calls for utilization of available water in an efficient and sustainable manner. Quantitative models can assist in management decision and planning purposes. The FAO’s newly developed crop-water model, AquaCrop, which simulates yield in response to water, has been calibrated for winter wheat and subsequently used to simulate yield under different sowing dates, irrigation frequencies, and irrigation sequences using 10 years daily weather data. The simulation results suggest that “2 irrigation frequency” is the most water-efficient schedule for wheat under the prevailing climatic and soil conditions. The results also indicate decreasing yield trend under late sowing. The normal/recommended sequence of irrigation performed better than the seven-days shifting from the normal. The results will help to formulate irrigation management plan based on the resource availability (water, and land availability from previous crop).


2021 ◽  
Author(s):  
El houssaine Bouras ◽  
Lionel Jarlan ◽  
Salah Er-Raki ◽  
Riad Balaghi ◽  
Abdelhakim Amazirh ◽  
...  

<p>Cereals are the main crop in Morocco. Its production exhibits a high inter-annual due to uncertain rainfall and recurrent drought periods. Considering the importance of this resource to the country's economy, it is thus important for decision makers to have reliable forecasts of the annual cereal production in order to pre-empt importation needs. In this study, we assessed the joint use of satellite-based drought indices, weather (precipitation and temperature) and climate data (pseudo-oscillation indices including NAO and the leading modes of sea surface temperature -SST- in the mid-latitude and in the tropical area) to predict cereal yields at the level of the agricultural province using machine learning algorithms (Support Vector Machine -SVM-, Random forest -FR- and eXtreme Gradient Boost -XGBoost-) in addition to Multiple Linear Regression (MLR). Also, we evaluate the models for different lead times along the growing season from January (about 5 months before harvest) to March (2 months before harvest). The results show the combination of data from the different sources outperformed the use of a single dataset; the highest accuracy being obtained when the three data sources were all considered in the model development. In addition, the results show that the models can accurately predict yields in January (5 months before harvesting) with an R² = 0.90 and RMSE about 3.4 Qt.ha<sup>-1</sup>.  When comparing the model’s performance, XGBoost represents the best one for predicting yields. Also, considering specific models for each province separately improves the statistical metrics by approximately 10-50% depending on the province with regards to one global model applied to all the provinces. The results of this study pointed out that machine learning is a promising tool for cereal yield forecasting. Also, the proposed methodology can be extended to different crops and different regions for crop yield forecasting.</p>


2020 ◽  
Vol 12 (17) ◽  
pp. 6788 ◽  
Author(s):  
Eva Lucas Segarra ◽  
Germán Ramos Ruiz ◽  
Vicente Gutiérrez González ◽  
Antonis Peppas ◽  
Carlos Fernández Bandera

The use of building energy models (BEMs) is becoming increasingly widespread for assessing the suitability of energy strategies in building environments. The accuracy of the results depends not only on the fit of the energy model used, but also on the required external files, and the weather file is one of the most important. One of the sources for obtaining meteorological data for a certain period of time is through an on-site weather station; however, this is not always available due to the high costs and maintenance. This paper shows a methodology to analyze the impact on the simulation results when using an on-site weather station and the weather data calculated by a third-party provider with the purpose of studying if the data provided by the third-party can be used instead of the measured weather data. The methodology consists of three comparison analyses: weather data, energy demand, and indoor temperature. It is applied to four actual test sites located in three different locations. The energy study is analyzed at six different temporal resolutions in order to quantify how the variation in the energy demand increases as the time resolution decreases. The results showed differences up to 38% between annual and hourly time resolutions. Thanks to a sensitivity analysis, the influence of each weather parameter on the energy demand is studied, and which sensors are worth installing in an on-site weather station are determined. In these test sites, the wind speed and outdoor temperature were the most influential weather parameters.


Sign in / Sign up

Export Citation Format

Share Document