scholarly journals Decadal Variability of Pycnocline Flows from the Subtropical to the Equatorial Pacific*

2005 ◽  
Vol 35 (10) ◽  
pp. 1861-1875 ◽  
Author(s):  
Qi Wang ◽  
Rui Xin Huang

Abstract A method based on isopycnal trajectory analysis is proposed to quantify the pathways from the subtropics to the Tropics. For a continuous stratified ocean a virtual streamfunction is defined, which can be used to characterize these pathways. This method is applied to the climatological dataset produced from a data-assimilated model. Analysis indicates that in each layer contours of the virtual streamfunction are a good approximation for streamlines, even if there is a cross-isopycnal mass flux. The zonal-integrated meridional transport per unit layer thickness through each pathway varies in proportion to 1/sinθ, where θ is latitude. The vertical-integrated total transport through pathways behaves similarly. Transport through pathways has a prominent decadal variability. Results suggest that in decadal time scales the interior pathway transport (IPT) anomaly may be mainly caused by the wind stress anomaly at low latitude. The western boundary pathway transport (WBPT) anomaly often has a sign opposite to the IPT anomaly, reflecting compensation between the IPT and the WBPT. However, more often than not the wind stress anomaly within tropical latitudes can also be used to explain the WBPT anomaly.

2019 ◽  
Vol 32 (5) ◽  
pp. 1641-1660 ◽  
Author(s):  
Giorgio Graffino ◽  
Riccardo Farneti ◽  
Fred Kucharski ◽  
Franco Molteni

Abstract The importance of subtropical and extratropical zonal wind stress anomalies on Pacific subtropical cell (STC) strength is assessed through several idealized and realistic numerical experiments with a global ocean model. Different zonal wind stress anomalies are employed, and their intensity is strengthened or weakened with respect to the climatological value throughout a suite of simulations. Subtropical strengthened (weakened) zonal wind stress anomalies result in increased (decreased) STC meridional mass and energy transport. When upwelling of subsurface water into the tropics is intensified (reduced), a distinct cold (warm) anomaly appears in the equatorial thermocline and up to the surface, resulting in significant tropical sea surface temperature (SST) anomalies. The use of realistic wind stress anomalies also suggests a potential impact of midlatitude atmospheric modes of variability on tropical climate through STC dynamics. The remotely driven response is compared with a set of simulations where an equatorial zonal wind stress anomaly is imposed. A dynamically distinct response is achieved, whereby the equatorial thermocline adjusts to the wind stress anomaly, resulting in significant equatorial SST anomalies as in the remotely forced simulations but with no role for STCs. Significant anomalies in Indonesian Throughflow transport are generated only when equatorial wind stress anomalies are applied, leading to remarkable heat content anomalies in the Indian Ocean. Equatorial wind stress anomalies do not involve modifications of STC transport but could set up the appropriate initial conditions for a tropical–extratropical teleconnection involving Hadley cells, exciting an STC anomalous transport, which ultimately feeds back on the tropics.


2005 ◽  
Vol 5 (5) ◽  
pp. 1291-1299 ◽  
Author(s):  
A. Kleinböhl ◽  
J. Kuttippurath ◽  
M. Sinnhuber ◽  
B.-M. Sinnhuber ◽  
H. Küllmann ◽  
...  

Abstract. We present observations of unusually high values of ozone and N2O in the middle stratosphere that were observed by the airborne submillimeter radiometer ASUR in the Arctic. The observations took place in the meteorological situation of a major stratospheric warming that occurred in mid-January 2003 and was dominated by a wave 2 event. On 23 January 2003 the observed N2O and O3 mixing ratios around 69° N in the middle stratosphere reached maximum values of ~190 ppb and ~10 ppm, respectively. The similarities of these N2O profiles in a potential temperature range between 800 and 1200 K with N2O observations around 20° N on 1 March 2003 by the same instrument suggest that the observed Arctic airmasses were transported from the tropics quasi-isentropically. This is confirmed by 5-day back trajectory calculations which indicate that the airmasses between about 800 and 1000 K had been located around 20° N 3–5 days prior to the measurement in the Arctic. Calculations with a linearized ozone chemistry model along calculated as well as idealized trajectories, initialized with the low-latitude ASUR ozone measurements, give reasonable agreement with the Arctic ozone measurement by ASUR. PV distributions suggest that these airmasses did not stay confined in the Arctic region which makes it unlikely that this dynamical situation lead to the formation of dynamically caused pockets of low ozone.


2015 ◽  
Vol 45 (10) ◽  
pp. 2457-2469 ◽  
Author(s):  
Gordon E. Swaters

AbstractA comprehensive theoretical study of the nonlinear hemispheric-scale midlatitude and cross-equatorial steady-state dynamics of a grounded deep western boundary current is given. The domain considered is an idealized differentially rotating, meridionally aligned basin with zonally varying parabolic bottom topography so that the model ocean shallows on both the western and eastern sides of the basin. Away from the equator, the flow is governed by nonlinear planetary geostrophic dynamics on sloping topography in which the potential vorticity equation can be explicitly solved. As the flow enters the equatorial region, it speeds up and becomes increasingly nonlinear and passes through two distinguished inertial layers referred to as the “intermediate” and “inner” inertial equatorial boundary layers, respectively. The flow in the intermediate equatorial region is shown to accelerate and turn eastward, forming a narrow equatorial jet. The qualitative properties of the solution presented are consistent with the known dynamical characteristics of the deep western boundary currents as they flow from the midlatitudes into the tropics. The predominately zonal flow across the ocean basin in the inner equatorial region (and its exit from the equatorial region) is determined in Part II of this study.


Ocean Science ◽  
2012 ◽  
Vol 8 (4) ◽  
pp. 497-523 ◽  
Author(s):  
C. P. Atkinson ◽  
H. L. Bryden ◽  
S. A. Cunningham ◽  
B. A. King

Abstract. In January and February 2010, a sixth transatlantic hydrographic section was completed across 25° N, extending the hydrographic record at this latitude to over half a century. In combination with continuous transport measurements made since 2004 at 26.5° N by the Rapid-WATCH project, we reassess transport variability in the 25° N hydrographic record. Past studies of transport variability at this latitude have assumed transport estimates from each hydrographic section to represent annual average conditions. In this study the uncertainty in this assumption is assessed through use of Rapid-WATCH observations to quantify sub-seasonal and seasonal transport variability. Whilst in the upper-ocean no significant interannual or decadal transport variability are identified in the hydrographic record, in the deep ocean transport variability in both depth and potential temperature classes suggests some interannual or decadal variability may have occurred. This is particularly striking in the lower North Atlantic Deep Water where southward transports prior to 1998 were greater than recent transports by several Sverdrups. Whilst a cooling and freshening of Denmark Straits Overflow Water has occurred which is coincident with these transport changes, these water mass changes appear to be density compensated. Transport changes are the result of changing velocity shear in the vicinity of the Deep Western Boundary Current.


2014 ◽  
Vol 10 (3) ◽  
pp. 1001-1015 ◽  
Author(s):  
N. J. de Winter ◽  
C. Zeeden ◽  
F. J. Hilgen

Abstract. Deep marine successions of early Campanian age from DSDP (Deep Sea Drilling Project) site 516F drilled at low paleolatitudes in the South Atlantic reveal distinct sub-Milankovitch variability in addition to precession, obliquity and eccentricity-related variations. Elemental abundance ratios point to a similar climatic origin for these variations and exclude a quadripartite structure as an explanation for the inferred semi-precession cyclicity in the magnetic susceptibility (MS) signal as observed in the Mediterranean Neogene for precession-related cycles. However, semi-precession cycles as suggested by previous work are likely an artifact reflecting the first harmonic of the precession signal. The sub-Milankovitch variability, especially in MS, is best approximated by a ~7 kyr cycle as shown by spectral analysis and bandpass filtering. The presence of sub-Milankovitch cycles with a period similar to that of Heinrich events of the last glacial cycle is consistent with linking the latter to low-latitude climate change caused by a non-linear response to precession-induced variations in insolation between the tropics.


2015 ◽  
Vol 11 (1) ◽  
pp. 221-241 ◽  
Author(s):  
J. H. C. Bosmans ◽  
F. J. Hilgen ◽  
E. Tuenter ◽  
L. J. Lourens

Abstract. The influence of obliquity, the tilt of the Earth's rotational axis, on incoming solar radiation at low latitudes is small, yet many tropical and subtropical paleoclimate records reveal a clear obliquity signal. Several mechanisms have been proposed to explain this signal, such as the remote influence of high-latitude glacials, the remote effect of insolation changes at mid- to high latitudes independent of glacial cyclicity, shifts in the latitudinal extent of the tropics, and changes in latitudinal insolation gradients. Using a sophisticated coupled ocean–atmosphere global climate model, EC-Earth, without dynamical ice sheets, we performed two experiments of obliquity extremes. Our results show that obliquity-induced changes in tropical climate can occur without high-latitude ice sheet fluctuations. Furthermore, the tropical circulation changes are consistent with obliquity-induced changes in the cross-equatorial insolation gradient, implying that this gradient may be used to explain obliquity signals in low-latitude paleoclimate records instead of the classic 65° N summer insolation curve.


2005 ◽  
Vol 22 (9) ◽  
pp. 1353-1372 ◽  
Author(s):  
Sarah T. Gille

Abstract Four years of ocean vector wind data are used to evaluate statistics of wind stress over the ocean. Raw swath wind stresses derived from the Quick Scatterometer (QuikSCAT) are compared with five different global gridded wind products, including products based on scatterometer observations, meteorological analysis winds from the European Centre for Medium-Range Weather Forecasts, and reanalysis winds from the National Centers for Environmental Prediction. Buoy winds from a limited number of sites in the Pacific Ocean are also considered. Probability density functions (PDFs) computed for latitudinal bands show that mean wind stresses for the six global products are largely in agreement, while variances differ substantially, by a factor of 2 or more, with swath wind stresses indicating highest variances for meridional winds and for zonal winds outside the Tropics. Higher moments of the PDFs also differ. Kurtoses are large for all wind products, implying that PDFs are not Gaussian. None of the available gridded products fully captures the range of extreme wind events seen in the raw swath data. Frequency spectra for the five gridded products agree with frequency spectra from swath data at low frequencies, but spectral slopes differ at higher frequencies, particularly for frequencies greater than 100 cycles per year (cpy), which are poorly resolved by a single scatterometer. In the frequency range between 10 and 90 cpy that is resolved by the scatterometer, spectra derived from swath data are flatter than spectra from gridded products and are judged to be flatter than ω−2/3 at all latitudes.


2021 ◽  
Author(s):  
Venisse Schossler ◽  
Francisco Aquino ◽  
Jefferson Simões ◽  
Pedro Reis ◽  
Denilson Viana

Abstract Pressure gradients and winds play an important role in Southern Hemisphere (SH) sea levels, which are currently associated with the positive trend of the Southern Annular Mode (SAM). This study investigated regional sea level anomalies (SLAs) in the southern coast Brazil using altimeter data (1993–2019), post-processed by the X-TRACK (CTOH/LEGOS). We observed a negative SLA from 1993 to 2009 and a positive SLA from 2010 to 2019, with upward trends throughout the evaluation period. We analyzed wind stress curl, pressure, and wind fields at sea level (FNMOC and ERA 5, respectively) in addition to sea surface temperature and height anomalies (SSTA/SSHA-OISST) in the South Atlantic Ocean (SAO) for 1993–2009 and 2010–2019. In relation to the first period, the second shows the enhancement in Hadley and Walker cells and trade winds, in addition to greater SSTA and SSHA in SAO. The SAO subtropical gyre and zonal winds at 45°S contribute to the intensification of the western boundary current. A greater pressure gradient between the SAO surface and the southeast of South America is noteworthy. Regionally, the positive SAM brings an increase in sea level to the study area, caused by greater wind stress and variability in heat flows.


2008 ◽  
Vol 38 (1) ◽  
pp. 177-192 ◽  
Author(s):  
Benjamin Rabe ◽  
Friedrich A. Schott ◽  
Armin Köhl

Abstract The shallow subtropical–tropical cells (STC) of the Atlantic Ocean have been studied from the output fields of a 50-yr run of the German partner of the Estimating the Circulation and Climate of the Ocean (GECCO) consortium assimilation model. Comparison of GECCO with time-mean observational estimates of density and meridional currents at 10°S and 10°N, which represent the boundaries between the tropics and subtropics in GECCO, shows good agreement in transports of major currents. The variability of the GECCO wind stress in the interior at 10°S and 10°N remains consistent with the NCEP forcing, although temporary changes can be large. On pentadal and longer time scales, an STC loop response is found between the poleward Ekman divergence and STC-layer convergence at 10°S and 10°N via the Equatorial Undercurrent (EUC) at 23°W, where the divergence leads the EUC and the convergence, suggesting a “pulling” mechanism via equatorial upwelling. The divergence is also associated with changes in the eastern equatorial upper-ocean heat content. Within the STC layer, partial compensation of the western boundary current (WBC) and the interior occurs at 10°S and 10°N. For the meridional overturning circulation (MOC) at 10°S it is found that more than one-half of the variability in the upper limb can be explained by the WBC. The explained MOC variance can be increased to 85% by including the geostrophic (Sverdrup) part of the wind-driven transports.


Sign in / Sign up

Export Citation Format

Share Document