scholarly journals Prediction of the 14 June 2010 Oklahoma City Extreme Precipitation and Flooding Event in a Multiphysics Multi-Initial-Conditions Storm-Scale Ensemble Forecasting System

2016 ◽  
Vol 31 (4) ◽  
pp. 1215-1246 ◽  
Author(s):  
Nathan Dahl ◽  
Ming Xue

Abstract Prolonged heavy rainfall produced widespread flooding in the Oklahoma City area early on 14 June 2010. This event was poorly predicted by operational models; however, it was skillfully predicted by the Storm-Scale Ensemble Forecast produced by the Center for Analysis and Prediction of Storms as part of the Hazardous Weather Testbed 2010 Spring Experiment. In this study, the quantitative precipitation forecast skill of ensemble members is assessed and ranked using a neighborhood-based threat score calculated against the stage IV precipitation data, and Oklahoma Mesonet observations are used to evaluate the forecast skill for surface conditions. Statistical correlations between skill metrics and qualitative comparisons of relevant features for higher- and lower-ranked members are used to identify important processes. The results demonstrate that the development of a cold pool from previous convection and the movement and orientation of the associated outflow boundary played dominant roles in the event. Without assimilated radar data from this earlier convection, the modeled cold pool was too weak and too slow to develop. Furthermore, forecast skill was sensitive to the choice of microphysics parameterization; members that used the Thompson scheme produced initial cold pools that propagated too slowly, substantially increasing errors in the timing and placement of later precipitation. The results also suggest important roles played by finescale, transient features in the period of outflow boundary stalling and reorientation associated with the heaviest rainfall. The unlikelihood of a deterministic forecast reliably predicting these features highlights the benefit of using convection-allowing/convection-resolving ensemble forecast methods for events of this kind.

2012 ◽  
Vol 27 (4) ◽  
pp. 832-855 ◽  
Author(s):  
Juanzhen Sun ◽  
Stanley B. Trier ◽  
Qingnong Xiao ◽  
Morris L. Weisman ◽  
Hongli Wang ◽  
...  

Abstract Sensitivity of 0–12-h warm-season precipitation forecasts to atmospheric initial conditions, including those from different large-scale model analyses and from rapid cycled (RC) three-dimensional variational data assimilations (3DVAR) with and without radar data, is investigated for a 6-day period during the International H2O Project. Neighborhood-based precipitation verification is used to compare forecasts made with the Advanced Research core of the Weather Research and Forecasting Model (ARW-WRF). Three significant convective episodes are examined by comparing the precipitation patterns and locations from different forecast experiments. From two of these three case studies, causes for the success and failure of the RC data assimilation in improving forecast skill are shown. Results indicate that the use of higher-resolution analysis in the initialization, rapid update cycling via WRF 3DVAR data assimilation, and the additional assimilation of radar observations each play a role in shortening the period of the initial precipitation spinup as well as in placing storms closer to observations, thus improving precipitation forecast skill by up to 8–9 h. Impacts of data assimilation differ for forecasts initialized at 0000 and 1200 UTC. The case studies show that the pattern and location of the forecasted precipitation were noticeably improved with radar data assimilation for the two late afternoon cases that featured lines of convection driven by surface-based cold pools. In contrast, the RC 3DVAR, both with and without radar data, had negative impacts on convective forecasts for a case of morning elevated convection associated with a midlatitude short-wave trough.


2020 ◽  
Author(s):  
I-Han Chen ◽  
Jing-Shan Hong ◽  
Ya-Ting Tsai ◽  
Chin-Tzu Fong

<p>Taiwan, a subtropical island with steep mountains, is influenced by diverse weather systems, including typhoons, monsoons, frontal, and convective systems. Of these, the prediction of deep, moist convection here is particularly challenging due to complex topography and apparent landsea contrast. This study explored the benefits of assimilating surface observations on prediction of afternoon thunderstorms using a 2-km resolution WRF and WRFDA model system with rapid update cycles. Consecutive afternoon thunderstorm events during 30 June to 08 July 2017 are selected. Five experiments, consisting of 240 continuous cycles are designed to evaluate the data assimilation strategy and observation impact. Statistical results show that assimilating surface observations systematically improves the accuracy of wind and temperature prediction near the surface. Also, assimilating surface observations alone in one-hour intervals improves model quantitative precipitation forecast (QPF) skill, extending the forecast lead time in the morning. Furthermore, radar data assimilation can benefit by the additional assimilation of surface observations, particularly for improving the model QPF skill for large rainfall thresholds. An afternoon thunderstorm event that occurred on 06 July 2017 is further examined. By assimilating surface and radar observations, the model is able to capture the timing and location of the convection. Consequently, the accuracy of the predicted cold pool and outflow boundary is improved, when compared to the surface observations.</p>


2017 ◽  
Vol 145 (6) ◽  
pp. 2177-2200 ◽  
Author(s):  
Russ S. Schumacher ◽  
John M. Peters

Abstract This study investigates the influences of low-level atmospheric water vapor on the precipitation produced by simulated warm-season midlatitude mesoscale convective systems (MCSs). In a series of semi-idealized numerical model experiments using initial conditions gleaned from composite environments from observed cases, small increases in moisture were applied to the model initial conditions over a layer either 600 m or 1 km deep. The precipitation produced by the MCS increased with larger moisture perturbations as expected, but the rainfall changes were disproportionate to the magnitude of the moisture perturbations. The experiment with the largest perturbation had a water vapor mixing ratio increase of approximately 2 g kg−1 over the lowest 1 km, corresponding to a 3.4% increase in vertically integrated water vapor, and the area-integrated MCS precipitation in this experiment increased by nearly 60% over the control. The locations of the heaviest rainfall also changed in response to differences in the strength and depth of the convectively generated cold pool. The MCSs in environments with larger initial moisture perturbations developed stronger cold pools, and the convection remained close to the outflow boundary, whereas the convective line was displaced farther behind the outflow boundary in the control and the simulations with smaller moisture perturbations. The high sensitivity of both the amount and location of MCS rainfall to small changes in low-level moisture demonstrates how small moisture errors in numerical weather prediction models may lead to large errors in their forecasts of MCS placement and behavior.


2020 ◽  
Vol 24 (6) ◽  
pp. 3135-3156
Author(s):  
Rossella Ferretti ◽  
Annalina Lombardi ◽  
Barbara Tomassetti ◽  
Lorenzo Sangelantoni ◽  
Valentina Colaiuda ◽  
...  

Abstract. The weather forecasts for precipitation have considerably improved in recent years thanks to the increase of computational power. This allows for the use of both a higher spatial resolution and the parameterization schemes specifically developed for representing sub-grid scale physical processes at high resolution. However, precipitation estimation is still affected by errors that can impact the response of hydrological models. To the aim of improving the hydrological forecast and the characterization of related uncertainties, a regional-scale meteorological–hydrological ensemble is presented. The uncertainties in the precipitation forecast and how they propagate in the hydrological model are also investigated. A meteorological–hydrological offline coupled ensemble is built to forecast events in a complex-orography terrain where catchments of different sizes are present. The Best Discharge-based Drainage (BDD; both deterministic and probabilistic) index, is defined with the aim of forecasting hydrological-stress conditions and related uncertainty. In this context, the meteorological–hydrological ensemble forecast is implemented and tested for a severe hydrological event which occurred over Central Italy on 15 November 2017, when a flood hit the Abruzzo region with precipitation reaching 200 mm (24 h)−1 and producing damages with a high impact on social and economic activities. The newly developed meteorological–hydrological ensemble is compared with a high-resolution deterministic forecast and with the observations (rain gauges and radar data) over the same area. The receiver operating characteristic (ROC) statistical indicator shows how skilful the ensemble precipitation forecast is with respect to both rain-gauge- and radar-retrieved precipitation. Moreover, both the deterministic and probabilistic configurations of the BDD index are compared with the alert map issued by Civil Protection Department for the event showing a very good agreement. Finally, the meteorological–hydrological ensemble allows for an estimation of both the predictability of the event a few days in advance and the uncertainty of the flood. Although the modelling framework is implemented on the basins of the Abruzzo region, it is portable and applicable to other areas.


2013 ◽  
Vol 141 (7) ◽  
pp. 2245-2264 ◽  
Author(s):  
Juanzhen Sun ◽  
Hongli Wang

Abstract The Weather Research and Forecasting Model (WRF) four-dimensional variational data assimilation (4D-Var) system described in Part I of this study is compared with its corresponding three-dimensional variational data assimilation (3D-Var) system using a Great Plains squall line observed during the International H2O Project. Two 3D-Var schemes are used in the comparison: a standard 3D-Var radar data assimilation (DA) that is the same as the 4D-Var except for the exclusion of the constraining dynamical model and an enhanced 3D-Var that includes a scheme to assimilate an estimated in-cloud humidity field. The comparison is made by verifying their skills in 0–6-h quantitative precipitation forecast (QPF) against stage-IV analysis, as well as in wind forecasts against radial velocity observations. The relative impacts of assimilating radial velocity and reflectivity on QPF are also compared between the 4D-Var and 3D-Var by conducting data-denial experiments. The results indicate that 4D-Var substantially improves the QPF skill over the standard 3D-Var for the entire 6-h forecast range and over the enhanced 3D-Var for most forecast hours. Radial velocity has a larger impact relative to reflectivity in 4D-Var than in 3D-Var in the first 3 h because of a quicker precipitation spinup. The analyses and forecasts from the 4D-Var and 3D-Var schemes are further compared by examining the meridional wind, horizontal convergence, low-level cold pool, and midlevel temperature perturbation, using analyses from the Variational Doppler Radar Analysis System (VDRAS) as references. The diagnoses of these fields suggest that the 4D-Var analyzes the low-level cold pool, its leading edge convergence, and midlevel latent heating in closer resemblance to the VDRAS analyses than the 3D-Var schemes.


2016 ◽  
Vol 31 (3) ◽  
pp. 957-983 ◽  
Author(s):  
Nusrat Yussouf ◽  
John S. Kain ◽  
Adam J. Clark

Abstract A continuous-update-cycle storm-scale ensemble data assimilation (DA) and prediction system using the ARW model and DART software is used to generate retrospective 0–6-h ensemble forecasts of the 31 May 2013 tornado and flash flood event over central Oklahoma, with a focus on the prediction of heavy rainfall. Results indicate that the model-predicted probabilities of strong low-level mesocyclones correspond well with the locations of observed mesocyclones and with the observed damage track. The ensemble-mean quantitative precipitation forecast (QPF) from the radar DA experiments match NCEP’s stage IV analyses reasonably well in terms of location and amount of rainfall, particularly during the 0–3-h forecast period. In contrast, significant displacement errors and lower rainfall totals are evident in a control experiment that withholds radar data during the DA. The ensemble-derived probabilistic QPF (PQPF) from the radar DA experiment is more skillful than the PQPF from the no_radar experiment, based on visual inspection and probabilistic verification metrics. A novel object-based storm-tracking algorithm provides additional insight, suggesting that explicit assimilation and 1–2-h prediction of the dominant supercell is remarkably skillful in the radar experiment. The skill in both experiments is substantially higher during the 0–3-h forecast period than in the 3–6-h period. Furthermore, the difference in skill between the two forecasts decreases sharply during the latter period, indicating that the impact of radar DA is greatest during early forecast hours. Overall, the results demonstrate the potential for a frequently updated, high-resolution ensemble system to extend probabilistic low-level mesocyclone and flash flood forecast lead times and improve accuracy of convective precipitation nowcasting.


2007 ◽  
Vol 135 (2) ◽  
pp. 507-525 ◽  
Author(s):  
Ming Hu ◽  
Ming Xue

Abstract Various configurations of the intermittent data assimilation procedure for Level-II Weather Surveillance Radar-1988 Doppler radar data are examined for the analysis and prediction of a tornadic thunderstorm that occurred on 8 May 2003 near Oklahoma City, Oklahoma. Several tornadoes were produced by this thunderstorm, causing extensive damages in the south Oklahoma City area. Within the rapidly cycled assimilation system, the Advanced Regional Prediction System three-dimensional variational data assimilation (ARPS 3DVAR) is employed to analyze conventional and radar radial velocity data, while the ARPS complex cloud analysis procedure is used to analyze cloud and hydrometeor fields and adjust in-cloud temperature and moisture fields based on reflectivity observations and the preliminary analysis of the atmosphere. Forecasts for up to 2.5 h are made from the assimilated initial conditions. Two one-way nested grids at 9- and 3-km grid spacings are employed although the assimilation configuration experiments are conducted for the 3-km grid only while keeping the 9-km grid configuration the same. Data from the Oklahoma City radar are used. Different combinations of the assimilation frequency, in-cloud temperature adjustment schemes, and the length and coverage of the assimilation window are tested, and the results are discussed with respect to the length and evolution stage of the thunderstorm life cycle. It is found that even though the general assimilation method remains the same, the assimilation settings can significantly impact the results of assimilation and the subsequent forecast. For this case, a 1-h-long assimilation window covering the entire initial stage of the storm together with a 10-min spinup period before storm initiation works best. Assimilation frequency and in-cloud temperature adjustment scheme should be set carefully to add suitable amounts of potential energy during assimilation. High assimilation frequency does not necessarily lead to a better result because of the significant adjustment during the initial forecast period. When a short assimilation window is used, covering the later part of the initial stage of storm and using a high assimilation frequency and a temperature adjustment scheme based on latent heat release can quickly build up the storm and produce a reasonable analysis and forecast. The results also show that when the data from a single Doppler radar are assimilated with properly chosen assimilation configurations, the model is able to predict the evolution of the 8 May 2003 Oklahoma City tornadic thunderstorm well for up to 2.5 h. The implications of the choices of assimilation settings for real-time applications are discussed.


MAUSAM ◽  
2021 ◽  
Vol 72 (4) ◽  
pp. 781-790
Author(s):  
MAHBOOB ALAM ◽  
MOHD. AMJAD

Numerical weather prediction (NWP) has long been a difficult task for meteorologists. Atmospheric dynamics is extremely complicated to model, and chaos theory teaches us that the mathematical equations used to predict the weather are sensitive to initial conditions; that is, slightly perturbed initial conditions could yield very different forecasts. Over the years, meteorologists have developed a number of different mathematical models for atmospheric dynamics, each making slightly different assumptions and simplifications, and hence each yielding different forecasts. It has been noted that each model has its strengths and weaknesses forecasting in different situations, and hence to improve performance, scientists now use an ensemble forecast consisting of different models and running those models with different initial conditions. This ensemble method uses statistical post-processing; usually linear regression. Recently, machine learning techniques have started to be applied to NWP. Studies of neural networks, logistic regression, and genetic algorithms have shown improvements over standard linear regression for precipitation prediction. Gagne et al proposed using multiple machine learning techniques to improve precipitation forecasting. They used Breiman’s random forest technique, which had previously been applied to other areas of meteorology. Performance was verified using Next Generation Weather Radar (NEXRAD) data. Instead of using an ensemble forecast, it discusses the usage of techniques pertaining to machine learning to improve the precipitation forecast. This paper is to present an approach for mapping of precipitation data. The project attempts to arrive at a machine learning method which is optimal and data driven for predicting precipitation levels that aids farmers thereby aiming to provide benefits to the agricultural domain.


2020 ◽  
Author(s):  
Enda Zhu ◽  
Xing Yuan

<p><span>Terrestrial water storage (TWS), including surface water storage, soil water storage, and groundwater storage, is critical for the global hydrological cycle and freshwater resources. A reliable decadal prediction of TWS can provide valuable information for sustainable managements of water resources and infrastructures in the face of climate change. Generally, the hydrological predictability mainly comes from two sources, i.e., initial conditions and boundary conditions. To date, the dependence of TWS forecast skill on the accuracy of initial hydrological conditions and decadal climate forecasts is not clear, and the benchmark skill remains unknown. In this work, we use decadal climate hindcasts from CMIP and perform hydrological ensemble simulations to estimate a baseline decadal forecast skill containing the two predictability sources information for TWS over global major river basins with an elasticity framework that considers varying skill of initial conditions and climate forecasts. With the incorporation of decadal climate forecast, our benchmark skill for TWS incorporated is significantly higher than initial conditions-based forecast skill over 25% and 31% basins for the leads of 1–4 and 3–6 years, especially over mid- and high-latitudes. Although the decadal precipitation forecast skill based on individual model is limited, the ensemble forecasts from multiple climate models are better than individuals. In addition, the standardized precipitation index (SPI) predictability and forecast skill from the latest CMIP6 decadal hindcast data are being investigated. Preliminary results suggest that predictability and forecast skill of SPI are positively correlated in general, and the predictability is higher than forecast skill, indicating the room for improving hydro-climate forecast. Our findings provide a new benchmark for verifying the success of decadal TWS forecasts and imply the possibility of improving decadal hydrological forecasts by using dynamical climate prediction information which still has room for improvement.</span></p>


2008 ◽  
Vol 136 (6) ◽  
pp. 2140-2156 ◽  
Author(s):  
Adam J. Clark ◽  
William A. Gallus ◽  
Tsing-Chang Chen

Abstract An experiment is described that is designed to examine the contributions of model, initial condition (IC), and lateral boundary condition (LBC) errors to the spread and skill of precipitation forecasts from two regional eight-member 15-km grid-spacing Weather Research and Forecasting (WRF) ensembles covering a 1575 km × 1800 km domain. It is widely recognized that a skillful ensemble [i.e., an ensemble with a probability distribution function (PDF) that generates forecast probabilities with high resolution and reliability] should account for both error sources. Previous work suggests that model errors make a larger contribution than IC and LBC errors to forecast uncertainty in the short range before synoptic-scale error growth becomes nonlinear. However, in a regional model with unperturbed LBCs, the infiltration of the lateral boundaries will negate increasing spread. To obtain a better understanding of the contributions to the forecast errors in precipitation and to examine the window of forecast lead time before unperturbed ICs and LBCs begin to cause degradation in ensemble forecast skill, the “perfect model” assumption is made in an ensemble that uses perturbed ICs and LBCs (PILB ensemble), and the “perfect analysis” assumption is made in another ensemble that uses mixed physics–dynamic cores (MP ensemble), thus isolating the error contributions. For the domain and time period used in this study, unperturbed ICs and LBCs in the MP ensemble begin to negate increasing spread around forecast hour 24, and ensemble forecast skill as measured by relative operating characteristic curves (ROC scores) becomes lower in the MP ensemble than in the PILB ensemble, with statistical significance beginning after forecast hour 69. However, degradation in forecast skill in the MP ensemble relative to the PILB ensemble is not observed in an analysis of deterministic forecasts calculated from each ensemble using the probability matching method. Both ensembles were found to lack statistical consistency (i.e., to be underdispersive), with the PILB ensemble (MP ensemble) exhibiting more (less) statistical consistency with respect to forecast lead time. Spread ratios in the PILB ensemble are greater than those in the MP ensemble at all forecast lead times and thresholds examined; however, ensemble variance in the MP ensemble is greater than that in the PILB ensemble during the first 24 h of the forecast. This discrepancy in spread measures likely results from greater bias in the MP ensemble leading to an increase in ensemble variance and decrease in spread ratio relative to the PILB ensemble.


Sign in / Sign up

Export Citation Format

Share Document