scholarly journals Zeta-potential and Particle Size Analysis of Human Amelogenins

2009 ◽  
Vol 89 (2) ◽  
pp. 149-153 ◽  
Author(s):  
V. Uskoković ◽  
Z. Castiglione ◽  
P. Cubas ◽  
L. Zhu ◽  
W. Li ◽  
...  

The developing enamel matrix is a highly dynamic system mainly composed of the full-length amelogenin and its proteolytic cleavage products. In this study, size, zeta-potential, and the isoelectric points of nanoparticles of the recombinant full-length human amelogenin (rH174) and two proteolytic products (rH163 and rH146) were analyzed by dynamic light-scattering and electrokinetic measurements. We tested the hypothesis that zeta-potential may be used as a control parameter in directing the self-assembly of amelogenins. Extensive aggregation of amelogenin molecules with the particle size reaching about one micron occurred at a mildly acidic to neutral pH, and coincided with the red shift of the internal fluorescence. Zeta-potential was between ± 15 mV in the same pH range, indicating that amelogenin aggregation occurred when surface potentials were minimal. This suggests that electrostatic interactions may be another crucial factor, aside from hydrophobic interaction, in the aggregation and hierarchical assembly of spherical particles of amelogenins into supramolecular structures of a higher order.

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Dwi Saryanti ◽  
Dian Nugraheni ◽  
Nisa Sindi Astuti

Nanoparticles are used in drug delivery which can increase mass transfer so increase the absorption and effectiveness of the drug. Therefore, its prospect to improve antibacterial and antioxidants activities of betel leaves. The research aimed to preparation and characterization of betel leaf extract using ionic gelation technique. The formulation of nanoparticles from betel leaf extract with ionic gelation method using alginate and CaCl2 with a ratio of 2.5: 1. The characterization of the nanoparticles includes particle size analysis, zeta potential, particle morphology and determination of flavonoid content. Particle size analysis demonstrated that the betel leaf extract nanoparticles had a particle size of 243,03 ± 1,48 nm, zeta potential of -23,0 ± 0,35 mV and morphology of particle showed that a flat shape. The betle leaf exctract nanoparticle positively contained flavonoid with Rf 0.7 equivalent to quercetin. The betel leaf extract can be made nanoparticles with ionic gelation method using alginate and CaCl2.


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 116 ◽  
Author(s):  
Pan Chen ◽  
Xujian Chai ◽  
Mengjie Tian ◽  
Wei Chen ◽  
Si Wan ◽  
...  

In this paper, a novel collector, dodecyl dimethyl betaine (BS-12), was used in the selective separation of ilmenite from titanaugite. The flotation performance and associated adsorption mechanism were studied by micro-flotation experiments, particle size analysis, Fourier-transform infrared (FT-IR) spectroscopy analysis, and X-ray photoelectron spectroscopy (XPS) analysis. The micro-flotation results indicated that BS-12 exhibited a stronger collecting ability towards ilmenite than titanaugite within an acidic pH range, and that the recovery of ilmenite was about 50% higher than that of titanaugite under the optimum flotation conditions. Particle size analysis demonstrated that BS-12 could selectively agglomerate ilmenite to a certain extent and then contribute to the flotation difference between ilmenite and titanaugite. FT-IR results showed some characteristic bands of BS-12 on treated ilmenite, and on titanaugite with BS-12. The XPS analysis further confirmed that BS-12 chemisorbed onto ilmenite and titanaugite in a similar way, but the limited active sites on titanaugite in comparison with ilmenite accounted for their differences in flotation.


Author(s):  
SUTRIYO SUTRIYO ◽  
RADITYA ISWANDANA ◽  
MARINA DWI HAFSHARI

Objective: Gold nanoparticles (AuNPs) have been developed as a promising effective site-specific drug to increase drug efficacy and reduce potentialside effects. However, AuNPs are unstable because they easily aggregate. This study aims to produce stable resveratrol (RSV)-conjugated AuNPs usingpolyvinyl alcohol (PVA).Methods: AuNPs were synthesized using the Turkevich method, which involves the reduction of chloroauric acid with sodium citrate as a reductor.AuNPs were then modified with PVA as a stabilizing agent and conjugated with RSV as a drug model in the carrier system. The formed conjugates werecharacterized using ultraviolet–visible spectrophotometry, Fourier transform infrared spectroscopy, particle size analysis, and high-performanceliquid chromatography. Furthermore, stability tests were performed in various media (2% bovine serum albumin [BSA], 1% cysteine, phosphatebufferedsaline [PBS] pH 4, PBS pH 7.4, and 0.9% NaCl) for 28 days.Results: RSV–AuNPs–PVA had a particle size of 78.75 nm, with polydispersity index (PDI) of 0.356, zeta potential of −36.1 mV, and highest entrapmentefficiency of 78.1%±0.7. RSV–AuNPs without PVA stabilization had a particle size of 51.97 nm, with PDI of 0.694 and zeta potential of −24.6 mV. Theresults of the stability tests demonstrated that RSV–AuNPs–PVA was stable in 2% BSA, PBS pH 7.4, PBS pH 4, and NaCl 0.9% and were unstable in 1%cysteine. RSV–AuNPs without PVA were stable in 2% BSA and PBS pH 7.4 and unstable in 1% cysteine, PBS pH 4, and 0.9% NaCl.Conclusion: PVA can improve the physical stability of RSV-AuNPs conjugates.


2013 ◽  
Vol 481 ◽  
pp. 66-71 ◽  
Author(s):  
Hyeon Ha Lim ◽  
Seung Ho Lee ◽  
Hyung Mi Lim ◽  
Dae Sung Kim

Highly dispersed ZnO nanosol, having an average particle size of about 40nm based on Particle Size Analysis (PSA), was prepared under aqueous solution without the removal of large particles by centrifugation. The ZnO nanosol was investigated on the effect of various dispersion parameters, i.e. milling time, dispersant content, pH, etc. The nanosol was effectively dispersed at 20~30 wt% of dispersant amount compared to ZnO content under ball-milling for 10 hours at pH 10. The dispersion characteristic of the nanosol was investigated into particle size and zeta potential. We discussed on the dispersion behavior of (-) charged ZnO particle surrounded by dispersant together with the variation of (-) charged dispersant's amount in aqueous medium at pH 10. The ZnO powder and nanosol were characterized by SEM, TEM, TGA, FT-IR, PSA and Zeta-potential.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 707
Author(s):  
Nishay Patel ◽  
Mohammed Gulrez Zariwala ◽  
Hisham Al-Obaidi

The objective of this study was to encapsulate iron and chromium into novel nanoparticles formulated using chitosan (CS), dextran sulfate (DS) and whey protein isolate (WPI) for oral drug delivery. Empty and loaded CS-DS nanoparticles were prepared via complex coacervation whilst whey protein nanocarriers were produced by a modified thermal processing method using chitosan. The physiochemical properties of the particles were characterized to determine the effects of formulation variables, including biopolymer ratio on particle size and zeta potential. Permeability studies were also undertaken on the most stable whey protein–iron nanoparticles by measuring Caco-2 ferritin formation. A particle size analysis revealed that the majority of samples were sub-micron sized, ranging from 420–2400 nm for CS-DS particles and 220–1000 nm for WPI-CS samples. As expected, a higher chitosan concentration conferred a 17% more positive zeta potential on chromium-entrapped WPI nanoparticles, whilst a higher dextran volume decreased the size of CS-DS nanoparticles by 32%. The addition of iron also caused a significant increase in size for all samples, as seen where the loaded WPI samples were 296 nm larger than the empty particles. Caco-2 iron absorption revealed that one formulation, which had the lowest particle size (226 ± 10 nm), caused a 64% greater iron absorption compared to the ferrous sulfate standard. This study describes, for the first time, the novel design of chromium- and iron-entrapped nanoparticles, which could act as novel systems for oral drug delivery.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
J. O. Woo ◽  
M. Misran ◽  
P. F. Lee ◽  
L. P. Tan

Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and itsin vitrorelease study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging thein vitrorelease.


2020 ◽  
Vol 9 (1) ◽  
pp. 861-865

Lupeol, is naturally occurring compound present in plants, with some beneficial health effects. In the present study, organogel-based emulsions (o/w) were obtained from canola oil. Particle size analysis, rheology test, optical microscopy, and permeability of nutraceuticals by cell culture and UPLC-MS/MS were done. Particle hydrodynamic diameters obtained in organogel-based emulsions loaded with nutraceuticals were <200nm, Polydispersity Index (PdI) was around 0.25-0.4, and Zeta Potential (ZP) was about -19 to -25mV. Droplets in emulsions presented spherical shapes and adjusted to the Herschel-Bulkley model. Interestingly, permeability of lupeol was increased compared with its crystalline; therefore organogel-based emulsions loaded with lupeol have potential for controlled delivery of this nutraceutical.


Sign in / Sign up

Export Citation Format

Share Document