scholarly journals Association between fluoroquinolone utilization rates and susceptibilities of gram-negative bacilli: Results from an 8-year intervention by an antibiotic stewardship program in an inner-city United States hospital

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110118
Author(s):  
Cosmina Zeana ◽  
Frank E. Palmieri ◽  
Vikas Gupta ◽  
Gang Ye ◽  
Peter Lao ◽  
...  

This study evaluated an antibiotic stewardship program (ASP) intervention aimed at reducing inpatient fluoroquinolone (FQ) use and examined its impact on ciprofloxacin susceptibilities of gram-negative bacteria in a large 611-bed community hospital. A two-step ASP intervention was implemented: an electronic medical record algorithm that prompted physicians to re-evaluate FQ use shortly after admission and changed institutional UTI/pneumonia guidelines that recommended options alternate to FQs for first-line empiric antibiotic therapy in 2010 and 2011 respectively. Between 2007 and 2017 FQ use and ciprofloxacin susceptibilities of all non-duplicate cultured isolates of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa obtained ≥72 h after admission were reviewed. Ambulatory care isolates served as a comparison group. FQ utilization rates and relationships to ciprofloxacin susceptibility were evaluated using interrupted time series models. Over the 11-year period, FQ use decreased from 110.0 (2007) to 26.2 (2017) days of therapy/1000 days at risk ( p < 0.001). Compared to pre-intervention, the estimated (post-intervention) reduction in FQ utilization was 28.4 (95% CI: 10.9–46) days of therapy/1000 days at risk. Reduced FQ utilization was correlated with increase susceptibilities to ciprofloxacin of hospital onset isolates of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis ( p < 0.02), and Pseudomonas aeruginosa ( p = 0.07). No significant susceptibility change was observed in the ambulatory care isolates. Persuasive interventions by an ASP successfully modified physicians’ inpatient empiric antibiotic use, produced a sustained reduction in FQ utilization rates and increased ciprofloxacin susceptibility to four commonly encountered gram-negative bacteria in a community hospital.

Author(s):  
Zehra Edis ◽  
Samir Haj Bloukh ◽  
Hamed Abu Sara

New antibacterial agents are needed to overcome the increasing number of infectious diseases caused by pathogenic microorganisms due to the emergence of multi-drug resistant strains. &nbsp;In this context, halogens, especially Iodine is known since ages for its antimicrobial activity. Therefore, especially triiodides encapsulated in organometallic complexes can be helpful as new agents against microorganisms. The aims of this work was to study the biological activity of [Na(12-Crown-4)2]I3 against gram positive Streptococcus pyogenes, Streptococcus faecalis, the spore forming bacteria Bacillus subtilis and gram negative bacteria Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa and Klebsiella pneumoniae, as well as the yeast Candida albicans. The antimicrobial and antifungal activities of the triiodide were determined by zone of inhibition plate studies. [Na(12-Crown-4)2]I3 exhibited potent antimicrobial activity on gram positive Streptochocci and the yeast C. albicans. Furthermore, the gram negative bacteria P. aeruginosa and K. pneumoniae were less effectively inhibited, while E. coli and P. mirabilis proved to be even resistant.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Po-Yu Liu ◽  
Yu-Lin Lee ◽  
Min-Chi Lu ◽  
Pei-Lan Shao ◽  
Po-Liang Lu ◽  
...  

ABSTRACT A multicenter collection of bacteremic isolates of Escherichia coli (n = 423), Klebsiella pneumoniae (n = 372), Pseudomonas aeruginosa (n = 300), and Acinetobacter baumannii complex (n = 199) was analyzed for susceptibility. Xpert Carba-R assay and sequencing for mcr genes were performed for carbapenem- or colistin-resistant isolates. Nineteen (67.8%) carbapenem-resistant K. pneumoniae (n = 28) and one (20%) carbapenem-resistant E. coli (n = 5) isolate harbored blaKPC (n = 17), blaOXA-48 (n = 2), and blaVIM (n = 1) genes.


Author(s):  
Oludare Temitope Osuntokun

Nose/Face masks are physical barriers to respiratory droplets that may enter through the nose and mouth to cause infections in the respiratory tract. The study was determined and assess the presence of Gram-negative bacteria in used home-made and surgical nose mask by residents of Akungba-Akoko Ondo State and to determine the antimicrobial susceptibility and resistant profile of the isolated bacteria to eight (8) different antimicrobial agents. The antimicrobial analysis were performed using standard microbiological and biochemical methods. Antimicrobial Susceptibility test of all identified isolates to antimicrobial agents were determined using the standard Kirby-Bauer disk diffusion method. The Gram-negative bacteria that were detected from the used home-made and surgical nose mask in this study include: Haemophilus influenza, Proteus mirabilis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumonia. During this study, all the Gram-negative bacteria isolates were resistant to Ciproflox in both used home-made and surgical nose mask. All isolates were also resistant to Ampicilin, Augmentin, Septrin and Streptomycin. In this study, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa were isolated organism from used home-made nose mask, it was observed that Escherichia coli were resistant to Augmentin, Tarivid, Ciproflox, Gentamycin, and Reflaxine, and Pseudomonas aeruginosa were resistant to Tarivid, Ciproflox, and Nalidixic acid between 20 mm and 24 mm zones of inhibition respectively. Haemophilus influenza, Pseudomonas aeruginosa, Escherichia coli and Proteus mirabilis were isolated organism from used surgical nose mask. It was observed that all isolated organisms from the used surgical nose/face mask were resistant to Augmentin and Gentamycin between 20 and 24 mm zones of inhibition respectively. Klebsiella pneumoniae were isolated from both used home-made and surgical nose/face mask and were found to be resistant to Streptomycin, Septrin, Ampicilin, and Gentamicin between 20 to 22 mm zones of inhibition respectively. Proteus mirabilis were isolated from used surgical nose/face mask,        they were found to be resistant to Ciproflox at 21mm zones of inhibition. Haemophilus influenza were resistant to Ampicilin, Septrin, Streptomycin, and Augmentin at 23 mm zones of inhibition. Isolates from used both home-made and surgical nose/face mask were subjected to modified and synergized antibiotics, it was observed that the isolates from both used home-made and surgical nose mask were resistant to all modified and synergized antibiotics between 20 and 25 mm zones of inhibition respectively. The result of this study validates the potency of  Gram negative bacteria isolated from used both home-made and surgical nose/face mask and the degree of invasion and evasiveness, thereby causing various degrees of infections and a false sense of protection against SARS-CoV-2 (COVID-19). Finding from this research recommends a stringent measures were needed to be implemented, to halt and combat this revenging situation especially in the new era of mutating SARS-CoV-2 Virus not only in Nigeria, worldwide at large.


2021 ◽  
Vol 24 (2) ◽  
pp. 83-86
Author(s):  
Lucian Giubelan ◽  

Objectives. Classification on multiple criteria of Gram-negative bacilli (GNBs) according to antibiotic resistance. Material and method. Retrospective study (January 2017-December 2018) carried out in the Infectious Diseases Clinic from Craiova; GNBs were identified using the Vitek 2 automated system, which subsequently established their sensitivity to antimicrobials; GNBs were classified based on an arbitrary score from 1 (minimum) to 5 (maximum) based on the multiple antibiotic resistance index (MAR), the percentage of multidrug resistant strains (MDR) and the percentage of extended resistance strains (XDR). The final classification represents the sum of the points awarded for each category considered. Results. The following GNBs were considered: Escherichia coli (n = 720), Klebsiella pneumoniae (n = 335), Pseudomonas aeruginosa (n = 139), Proteus mirabilis (n = 60) and Acinetobacter baumannii (n = 29). MAR values are: Acinetobacter baumannii (Ab) – 0.6, Proteus mirabilis (Pm) – 0.52, Pseudomonas aeruginosa (Pa) – 0.51, Klebsiella pneumoniae (Kp) - 0.37 and Escherichia coli (Ec) – 0.23. The percentage of MDR strains is: Pm – 76.67%, Kp – 68.86%, Pa - 58.71%, Ec – 51.94% and Ab – 51.72%; XDR strains were identified for Ab - 17.24% and Pa – 6.47%. The final classification of GNBs is as follows: Pa – 12p, Ab - 11 p, Pm – 7p, Kp – 6p, Ec – 3p. Conclusions. Depending on the resistance profile on multiple criteria, the classification of the studied Gram-negative bacteria is as follows: Pa, Ab, Pm, Kp, Ec.


2001 ◽  
Vol 14 (4) ◽  
pp. 933-951 ◽  
Author(s):  
Patricia A. Bradford

SUMMARY β-Lactamases continue to be the leading cause of resistance to β-lactam antibiotics among gram-negative bacteria. In recent years there has been an increased incidence and prevalence of extended-spectrum β-lactamases (ESBLs), enzymes that hydrolyze and cause resistance to oxyimino-cephalosporins and aztreonam. The majority of ESBLs are derived from the widespread broad-spectrum β-lactamases TEM-1 and SHV-1. There are also new families of ESBLs, including the CTX-M and OXA-type enzymes as well as novel, unrelated β-lactamases. Several different methods for the detection of ESBLs in clinical isolates have been suggested. While each of the tests has merit, none of the tests is able to detect all of the ESBLs encountered. ESBLs have become widespread throughout the world and are now found in a significant percentage of Escherichia coli and Klebsiella pneumoniae strains in certain countries. They have also been found in other Enterobacteriaceae strains and Pseudomonas aeruginosa. Strains expressing these β-lactamases will present a host of therapeutic challenges as we head into the 21st century.


Author(s):  
Katharina Bach ◽  
Birgit Edel ◽  
Steffen Höring ◽  
Lucie Bartoničkova ◽  
Stefan Glöckner ◽  
...  

AbstractThe LAMP-based eazyplex® BloodScreen GN was evaluated for the detection of frequent Gram-negatives directly from positive blood culture (BC) bottles. A total of 449 BCs were analyzed. Sensitivities and specificities were 100% and 100% for Escherichia coli, 95.7% and 100% for Klebsiella pneumoniae, 100% and 100% for blaCTX-M, 100% and 100% for Klebsiella oxytoca, 100% and 99% for Proteus mirabilis, and 100% and 99.8% for Pseudomonas aeruginosa, respectively. The time to result ranged from 8 to 16 min, plus about 6 min for sample preparation. The eazyplex® BloodScreen GN is a reliable molecular assay for rapid BC testing.


2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


2016 ◽  
Vol 11 (31) ◽  
pp. 113-122
Author(s):  
Carla Franco Porto Belmont Souza ◽  
Luiz Eduardo Souza da Silva Irineu ◽  
Renan Silva De Souza ◽  
Renato da Silva Teixeira ◽  
Ivina Sanches Pereira ◽  
...  

A resistência microbiana tem se mostrado um problema de proporções mundiais, causando estado de morbidade e mortalidade em diversos pacientes. Em vista disso, tem crescido a busca por métodos alternativos naturais de profilaxia. A investigação clínica sugere que o Extrato de Cranberry está entre as melhores propostas de prevenção natural. O Cranberry (Vaccinium macrocarpon) é um fruto que tem crescido comercialmente pelo sabor e propriedades benéficas à saúde. Dentre as formas comercializadas estão: o suco, o chá e as cápsulas contendo o extrato seco. A ação desta planta está relacionada ao tratamento de doenças do trato urinário, por possuir substâncias que inibem a adesão bacteriana ao epitélio do trato urinário, dificultando sua proliferação e reprodução. Dentre todas as infecções relacionadas à assistência a saúde, a Infecção do Trato Urinário é a mais frequentemente associada a procedimentos invasivos. Se não for tratada, pode resultar em complicações como pielonefrite aguda, bacteremia e pionefrose. Portanto, cranberry pode ser uma nova alternativa para o combate das infecções uroepiteliais, por ser um produto natural de preço acessível, e com formas de comercialização diversificada, ao contrário dos antimicrobianos convencionais, que por sua vez são caros e podem acabar causando resistência nos micro-organismos. Este trabalho teve como objetivo avaliar in vitro a atividade antimicrobiana do extrato de Cranberry, adquirido em farmácia de manipulação, sobre 8 micro-organismos isolados de infecções urinárias. As cepas utilizadas, adquiridas da coleção da FIOCRUZ, foram: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Serratia marscecens, Staphylococcus aureus, Enterococcus faecalis e Enterococcus faecium. No estudo, foram utilizados o caldo Mueller Hinton (MH), Extrato de Cranberry e as bactérias patogênicas. O ensaio foi realizado em triplicata, com o uso de um controle de crescimento dos micro-organismos e o experimento para avaliação do crescimento bacteriano na presença do extrato. A turbidez foi medida com o auxílio de um espectrofotômetro, no comprimento de onda de 600 nm, antes e após 24 horas de incubação à 37 ºC. O procedimento forneceu a Densidade Ótica, do qual possibilitou a identificação da inibição microbiana. Para análise estatística foi utilizado o Teste t de Student. O Extrato de Cranberry apresentou atividade antimicrobiana sobre as bactérias Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Serratia marscecens e Enterococcus faecalis (p < 0,05), confirmando seu efeito benéfico em infecções urinárias. No entanto, não teve efeito inibitório significativo sobre Pseudomonas aeruginosa, Proteus mirabilis e Enterococcus faecium (p > 0,05).


KYAMC Journal ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 87-90
Author(s):  
Abdullah Akhtar Ahmed ◽  
Nusrat Akhtar Juyee ◽  
SM Ali Hasan

Background: Colistin-resistant Gram-negative bacteria is a rapidly emerging global threatgenerated a sense of public alarm. Objective: To combat this challenge a study was designedto evaluate the fast spreading infections by colistin-resistant pathogens in the tertiary care rural hospital of Bangladesh. Materials and Methods: To study isolation ofpathogenic gram-negative bacilli,clinical sample (n-640) of hospitalized patients of Khwaja Yunus Ali Medical College Hospital in Enayetpur, Bangladesh during the 1st quarter of the year 2019 were used. The bacterial isolates were screened for meropenem and colistin-resistance. Results: A total of 156 bacterial isolates were studied which included Escherichia coli (n-112), Klebsiella pneumoniae (n-14), Pseudomonas aeruginosa (n-27), and Salmonella typhi (n-3). Antibiotic sensitivity testing showed that 32/156(20%) and 119/156 (76%) isolates were resistant to meropenem and colistin, respectively. whereas 50/156 (32%) isolates were resistant to both antibiotics. Escherichia coli, K. pneumoniae, pseudomonas aeruginosa, and Salmonella typhi isolates respectivelywere 112/156 (72%), 14/156 (9%). 27/156 (17%), and 3/156 (2%). Conclusion: Colistin is typically used as salvage therapy, or last-line treatment, for MDR gramnegative infections.But there is worrisome therapeutic scenario in our study finding of colistin resistance is 76% in Gram-negative bacteria of the clinical isolates. The restricted and rational use of colistin drug is the need of hour. KYAMC Journal Vol. 11, No.-2, July 2020, Page 87-90


2000 ◽  
Vol 12 (3) ◽  
pp. 218-223 ◽  
Author(s):  
R. van den Hoven ◽  
J. A. Wagenaar ◽  
R. D. Walker

The in vitro activity of difloxacin against canine bacterial isolates from clinical cases was studied in the United States and The Netherlands. Minimal inhibitory concentrations (MIC), the postantibiotic effect, the effect of pH on antimicrobial activity, and the bacterial killing rate tests were determined according to standard techniques. The MICs of American and Dutch isolates agreed in general. The MICs of the American gram-negative isolates ranged from 0.06 to 2.0 μg/ml, and the MICs of the Dutch gram-negative isolates ranged from 0.016 to 8.0 μg/ml. A few European strains of Proteus mirabilis and Klebsiella pneumoniae had relatively high MICs. Bordetella bronchiseptica also was less susceptible to difloxacin. The MICs of the American gram-positive cocci ranged from 0.125 to 4.0 μg/ml, and the MICs of Dutch isolates ranged from 0.125 to 2.0 μg/ml. Difloxacin induced a concentration-dependent postantibiotic effect that lasted 0.2–3 hours in cultures with Escherichia coli, Staphylococcus intermedius, Streptococcus canis, Proteus spp., and Klebsiella pneumoniae. There was no postantibiotic effect observed against canine Pseudomonas aeruginosa. Decreasing the pH of the medium increased the MIC of Proteus mirabilis for difloxacin. The MICs of Escherichia coli and Klebsiella pneumoniae were lowest at neutral pH and were slightly increased in acid or alkaline media. At a neutral pH, most tested bacterial species were killed at a difloxacin concentration of 4 times the MIC. Similar results were obtained when these same bacteria were tested against enrofloxacin. A Klebsiella pneumoniae strain in an acidic environment was readily killed at difloxacin or enrofloxacin MIC, but at neutral pH the drug concentration had to be raised to 4 times the MIC for a bactericidal effect. After 24 hours of incubation at pH 7.1, difloxacin and enrofloxacin had similar bactericidal activity for all bacteria tested except Staphylococcus intermedius. Against S. intermedius, difloxacin was more bactericidal than enrofloxacin.


Sign in / Sign up

Export Citation Format

Share Document