scholarly journals Gram Negative Bacteria (GNB) Isolated From Used Home-made and Surgical Nose/Face Mask by Local Residents of Akungba Akoko, Ondo State, a Threat to Life and False Sense of Protection against SARS-CoV-2 (COVID-19)

Author(s):  
Oludare Temitope Osuntokun

Nose/Face masks are physical barriers to respiratory droplets that may enter through the nose and mouth to cause infections in the respiratory tract. The study was determined and assess the presence of Gram-negative bacteria in used home-made and surgical nose mask by residents of Akungba-Akoko Ondo State and to determine the antimicrobial susceptibility and resistant profile of the isolated bacteria to eight (8) different antimicrobial agents. The antimicrobial analysis were performed using standard microbiological and biochemical methods. Antimicrobial Susceptibility test of all identified isolates to antimicrobial agents were determined using the standard Kirby-Bauer disk diffusion method. The Gram-negative bacteria that were detected from the used home-made and surgical nose mask in this study include: Haemophilus influenza, Proteus mirabilis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumonia. During this study, all the Gram-negative bacteria isolates were resistant to Ciproflox in both used home-made and surgical nose mask. All isolates were also resistant to Ampicilin, Augmentin, Septrin and Streptomycin. In this study, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa were isolated organism from used home-made nose mask, it was observed that Escherichia coli were resistant to Augmentin, Tarivid, Ciproflox, Gentamycin, and Reflaxine, and Pseudomonas aeruginosa were resistant to Tarivid, Ciproflox, and Nalidixic acid between 20 mm and 24 mm zones of inhibition respectively. Haemophilus influenza, Pseudomonas aeruginosa, Escherichia coli and Proteus mirabilis were isolated organism from used surgical nose mask. It was observed that all isolated organisms from the used surgical nose/face mask were resistant to Augmentin and Gentamycin between 20 and 24 mm zones of inhibition respectively. Klebsiella pneumoniae were isolated from both used home-made and surgical nose/face mask and were found to be resistant to Streptomycin, Septrin, Ampicilin, and Gentamicin between 20 to 22 mm zones of inhibition respectively. Proteus mirabilis were isolated from used surgical nose/face mask,        they were found to be resistant to Ciproflox at 21mm zones of inhibition. Haemophilus influenza were resistant to Ampicilin, Septrin, Streptomycin, and Augmentin at 23 mm zones of inhibition. Isolates from used both home-made and surgical nose/face mask were subjected to modified and synergized antibiotics, it was observed that the isolates from both used home-made and surgical nose mask were resistant to all modified and synergized antibiotics between 20 and 25 mm zones of inhibition respectively. The result of this study validates the potency of  Gram negative bacteria isolated from used both home-made and surgical nose/face mask and the degree of invasion and evasiveness, thereby causing various degrees of infections and a false sense of protection against SARS-CoV-2 (COVID-19). Finding from this research recommends a stringent measures were needed to be implemented, to halt and combat this revenging situation especially in the new era of mutating SARS-CoV-2 Virus not only in Nigeria, worldwide at large.

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110118
Author(s):  
Cosmina Zeana ◽  
Frank E. Palmieri ◽  
Vikas Gupta ◽  
Gang Ye ◽  
Peter Lao ◽  
...  

This study evaluated an antibiotic stewardship program (ASP) intervention aimed at reducing inpatient fluoroquinolone (FQ) use and examined its impact on ciprofloxacin susceptibilities of gram-negative bacteria in a large 611-bed community hospital. A two-step ASP intervention was implemented: an electronic medical record algorithm that prompted physicians to re-evaluate FQ use shortly after admission and changed institutional UTI/pneumonia guidelines that recommended options alternate to FQs for first-line empiric antibiotic therapy in 2010 and 2011 respectively. Between 2007 and 2017 FQ use and ciprofloxacin susceptibilities of all non-duplicate cultured isolates of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa obtained ≥72 h after admission were reviewed. Ambulatory care isolates served as a comparison group. FQ utilization rates and relationships to ciprofloxacin susceptibility were evaluated using interrupted time series models. Over the 11-year period, FQ use decreased from 110.0 (2007) to 26.2 (2017) days of therapy/1000 days at risk ( p < 0.001). Compared to pre-intervention, the estimated (post-intervention) reduction in FQ utilization was 28.4 (95% CI: 10.9–46) days of therapy/1000 days at risk. Reduced FQ utilization was correlated with increase susceptibilities to ciprofloxacin of hospital onset isolates of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis ( p < 0.02), and Pseudomonas aeruginosa ( p = 0.07). No significant susceptibility change was observed in the ambulatory care isolates. Persuasive interventions by an ASP successfully modified physicians’ inpatient empiric antibiotic use, produced a sustained reduction in FQ utilization rates and increased ciprofloxacin susceptibility to four commonly encountered gram-negative bacteria in a community hospital.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Eyob Yohannes Garoy ◽  
Yacob Berhane Gebreab ◽  
Oliver Okoth Achila ◽  
Nobiel Tecklebrhan ◽  
Hermon Michael Tsegai ◽  
...  

Background. The World Health Organization has emphasized the importance of understanding the epidemiology of MDR organisms from a local standpoint. Here, we report on a spectrum of bacteria associated with surgical site infections in two referral hospitals in Eritrea and the associated antibiotic susceptibility patterns. Methods. This survey was conducted between February and May 2017. A total of 83 patients receiving treatment for various surgical conditions were included. Swabs from infected surgical sites were collected using Levine technique and processed using standard microbiological procedures. In vitro antimicrobial susceptibility testing was performed on Mueller–Hinton Agar by the Kirby-Bauer disk diffusion method following Clinical and Laboratory Standards Institute guidelines. The data were analyzed using SPSS version 20. Results. A total of 116 isolates were recovered from 83 patients. In total, 67 (58%) and 49 (42%) of the isolates were Gram-positive and Gram-negative bacteria, respectively. The most common isolates included Citrobacter spp., Klebsiella spp., Escherichia coli, Proteus spp., Pseudomonas aeruginosa, Salmonella spp., Enterobacter spp., and Acinetobacter spp. In contrast, Staphylococcus aureus, CONS, and Streptococcus viridians were the predominant Gram-positive isolates. All the Staphylococcus aureus isolates were resistant to penicillin. MRSA phenotype was observed in 70% of the isolates. Vancomycin, clindamycin, and erythromycin resistance were observed in 60%, 25%, and 25% of the isolates, respectively. Furthermore, a high proportion (91%) of the Gram-negative bacteria were resistant to ampicillin and 100% of the Pseudomonas aeruginosa and Escherichia coli isolates were resistant to >5 of the tested antibiotics. The two Acinetobacter isolates were resistant to >7 antimicrobial agents. We also noted that 4 (60%) of the Klebsiella isolates were resistant to >5 antimicrobial agents. Possible pan-drug-resistant (PDR) strains were also isolated. Conclusion. Due to the high frequency of MDR isolates reported in this study, the development and implementation of suitable infection control policies and guidelines is imperative.


Author(s):  
Zehra Edis ◽  
Samir Haj Bloukh ◽  
Hamed Abu Sara

New antibacterial agents are needed to overcome the increasing number of infectious diseases caused by pathogenic microorganisms due to the emergence of multi-drug resistant strains. &nbsp;In this context, halogens, especially Iodine is known since ages for its antimicrobial activity. Therefore, especially triiodides encapsulated in organometallic complexes can be helpful as new agents against microorganisms. The aims of this work was to study the biological activity of [Na(12-Crown-4)2]I3 against gram positive Streptococcus pyogenes, Streptococcus faecalis, the spore forming bacteria Bacillus subtilis and gram negative bacteria Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa and Klebsiella pneumoniae, as well as the yeast Candida albicans. The antimicrobial and antifungal activities of the triiodide were determined by zone of inhibition plate studies. [Na(12-Crown-4)2]I3 exhibited potent antimicrobial activity on gram positive Streptochocci and the yeast C. albicans. Furthermore, the gram negative bacteria P. aeruginosa and K. pneumoniae were less effectively inhibited, while E. coli and P. mirabilis proved to be even resistant.


2012 ◽  
Vol 40 (6) ◽  
pp. 1549-1552 ◽  
Author(s):  
Carla L. Brown ◽  
Karen Smith ◽  
Laura McCaughey ◽  
Daniel Walker

The emergence of pan-resistant strains of Gram-negative pathogens and the ability of many bacteria to form multidrug-resistant biofilms during chronic infection poses the grave threat of bacterial infections that are truly untreatable with our current armoury of antibiotics. Despite obvious clinical need, few new antibiotics have entered clinical practice in recent years. For ‘difficult to treat’ Gram-negative bacteria such as Pseudomonas aeruginosa and Escherichia coli, where the presence of outer membrane and multidrug-efflux pumps severely limit the effectiveness of whole classes of antibiotics, the need is particularly pressing. An alternative approach to antimicrobial treatment is to use the well-characterized species-specific colicin-like bacteriocins which are produced by a wide range of Gram-negative bacteria, including Pseudomonas aeruginosa and Escherichia coli. Our current work on colicin-like bacteriocins aims to determine whether these potent antimicrobial agents are effective at killing bacteria growing in the biofilm state and during infection.


2014 ◽  
Vol 64 (3) ◽  
pp. 335-344 ◽  
Author(s):  
Awwad A. Radwan ◽  
Mostafa M. Ghorab ◽  
Mansour S. Alsaid ◽  
Fares K. Alanazi

Abstract A series of pyrazole derivatives 9-22 were designed and synthesized. All the newly synthesized compounds were assayed for their antimicrobial activity against the Grampositive bacteria Staphyllococcus aureus and Bacillius subtilis and the Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa, in addition to the fungi organisms, Candida albicans, C. parapsilosis and C. tropicalis. Ethyl 5-(2,5-dimethylthiophen- 3-yl)-1-phenyl-1H-pyrazole-3-carboxylate (21) (MICE.coli = 0.038 μmol mL-1, MICP. aerug. = 0.067 μmol mL-1) is nearly as active as ampicillin (MIC = 0.033 and 0.067 μmol mL-1), respectively. Ethyl 5-(4-bromo-2-chlorophenyl)- 1-phenyl-1H-pyrazole-3-carboxylate (16) (MIC = 0.015 μmol mL-1) is more active than fluconazole (0.020 μmol mL-1) as a reference drug against C. parapsilosis.


2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


KYAMC Journal ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 87-90
Author(s):  
Abdullah Akhtar Ahmed ◽  
Nusrat Akhtar Juyee ◽  
SM Ali Hasan

Background: Colistin-resistant Gram-negative bacteria is a rapidly emerging global threatgenerated a sense of public alarm. Objective: To combat this challenge a study was designedto evaluate the fast spreading infections by colistin-resistant pathogens in the tertiary care rural hospital of Bangladesh. Materials and Methods: To study isolation ofpathogenic gram-negative bacilli,clinical sample (n-640) of hospitalized patients of Khwaja Yunus Ali Medical College Hospital in Enayetpur, Bangladesh during the 1st quarter of the year 2019 were used. The bacterial isolates were screened for meropenem and colistin-resistance. Results: A total of 156 bacterial isolates were studied which included Escherichia coli (n-112), Klebsiella pneumoniae (n-14), Pseudomonas aeruginosa (n-27), and Salmonella typhi (n-3). Antibiotic sensitivity testing showed that 32/156(20%) and 119/156 (76%) isolates were resistant to meropenem and colistin, respectively. whereas 50/156 (32%) isolates were resistant to both antibiotics. Escherichia coli, K. pneumoniae, pseudomonas aeruginosa, and Salmonella typhi isolates respectivelywere 112/156 (72%), 14/156 (9%). 27/156 (17%), and 3/156 (2%). Conclusion: Colistin is typically used as salvage therapy, or last-line treatment, for MDR gramnegative infections.But there is worrisome therapeutic scenario in our study finding of colistin resistance is 76% in Gram-negative bacteria of the clinical isolates. The restricted and rational use of colistin drug is the need of hour. KYAMC Journal Vol. 11, No.-2, July 2020, Page 87-90


Pathogens ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 75 ◽  
Author(s):  
Wadha Alfouzan ◽  
Rita Dhar ◽  
David Nicolau

Limited data are available on susceptibilities of these organisms to some of the recently made accessible antimicrobial agents. The in vitro activities of newer antibiotics, such as, ceftolozane/tazobactam (C/T) and ceftazidime/avibactam (CZA) along with some “older” antibiotics, for example fosfomycin (FOS) and colistin (CL) were determined against selected strains (resistant to ≥ 3 antimicrobial agents) of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Minimum inhibitory concentrations (MIC) were determined by Clinical and Laboratory Standards Institute microbroth dilution. 133 isolates: 46 E. coli, 39 K. pneumoniae, and 48 P. aeruginosa were tested. Results showed that E. coli isolates with MIC50/90, 0.5/1 μ g / mL for CL; 4/32 μ g / mL for FOS; 0.25/32 μ g / mL for C/T; 0.25/8 μ g / mL for CZA, exhibited susceptibility rates of 95.7%, 97.8%, 76.1%, and 89.1%, respectively. On the other hand, K. pneumoniae strains with MIC50/90, 0.5/1 μ g / mL for CL; 256/512 μ g / mL for FOS; 2/128 μ g / mL for C/T; 0.5/128 μ g / mL for CZA showed susceptibility rates of 92.3%, 7.7%, 51.3%, and 64.1%, respectively. P. aeruginosa isolates with MIC50/90, 1/1 μ g / mL for CL; 128/128 μ g / mL for C/T; 32/64 μ g / mL for CZA presented susceptibility rates of 97.9%, 33.3%, and 39.6%, respectively. Higher MICs were demonstrated against most of the antibiotics. However, CL retained efficacy at low MICs against most of the isolates tested.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Po-Yu Liu ◽  
Yu-Lin Lee ◽  
Min-Chi Lu ◽  
Pei-Lan Shao ◽  
Po-Liang Lu ◽  
...  

ABSTRACT A multicenter collection of bacteremic isolates of Escherichia coli (n = 423), Klebsiella pneumoniae (n = 372), Pseudomonas aeruginosa (n = 300), and Acinetobacter baumannii complex (n = 199) was analyzed for susceptibility. Xpert Carba-R assay and sequencing for mcr genes were performed for carbapenem- or colistin-resistant isolates. Nineteen (67.8%) carbapenem-resistant K. pneumoniae (n = 28) and one (20%) carbapenem-resistant E. coli (n = 5) isolate harbored blaKPC (n = 17), blaOXA-48 (n = 2), and blaVIM (n = 1) genes.


1986 ◽  
Vol 32 (1) ◽  
pp. 66-69 ◽  
Author(s):  
Petri Viljanen ◽  
Helena Käyhty ◽  
Martti Vaara ◽  
Timo Vaara

Polymyxin B nonapeptide was able to sensitize Escherichia coli strains and strains of Salmonella typhimurium, Klebsiella spp., Enterobacter cloacae, Pseudomonas aeruginosa, and Haemophilus influenzae to the bactericidal action of fresh normal human serum. The degree of sensitization varied significantly within the strains. Strains of Proteus mirabilis, Neisseria gonorrhoeae, and N. meningitidis remained resistant.


Sign in / Sign up

Export Citation Format

Share Document