Effect of enzymatic hydrolysis on developing support of polyamide woven fabric for enzyme immobilization

2018 ◽  
Vol 89 (7) ◽  
pp. 1345-1360 ◽  
Author(s):  
Ji Eun Song ◽  
Hye Rim Kim ◽  
So Hee Lee

Polyamide fiber has been considered as a suitable support for enzyme immobilization because of its low cost, chemical and mechanical properties and ready availability in a number of different forms. In particular, polyamide fabric has highly specific surface and good elasticity. The present study aims to develop an immobilization support from polyamide fabric and to establish the optimum immobilization conditions for laccase. For this, the enzymatic hydrolysis process was introduced to the hydrolysis of polyamide, creating amino groups that immobilize enzyme molecules. When polyamide fabric was hydrolyzed by bromelain during enzymatic hydrolysis, the highest immobilization yield (68 ± 0.7%) and relative activity (95 ± 0.52%) of immobilized laccase were obtained. For successful enzyme immobilization, the optimal glutaraldehyde crosslinking conditions were pH of 9.0 with 10% (v/v) of glutaraldehyde concentration for 240 min at 45℃. The most favorable immobilization conditions were as follows: pH of 6.0 with 35% (owf) of laccase concentration for 600 min at 4℃. Under the optimum treatment conditions, the pH and thermal stability of immobilized laccase were improved. After 20 days of storage, the immobilized laccase on enzymatic hydrolyzed polyamide fabric retained approximately 30% of its initial activity. Furthermore, the immobilized laccase indicated potential reuse over 10 use cycles. The structural changes of polyamide fabric according to treatment processes were demonstrated by Fourier transform infrared spectroscopy. The changes of surface morphology were measured by scanning electron microscopy according to the multi treatment steps.

2016 ◽  
Vol 87 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Eui Jin Shim ◽  
So Hee Lee ◽  
Wha Soon Song ◽  
Hye Rim Kim

In this study, we aimed to develop an enzyme-immobilized support using polyester woven fabrics and to optimize the development process. We obtained information about the storage stability and reusability of the enzyme and showed the applicability of the polyester woven fabric as an enzyme-immobilized support. In particular, the samples hydrolyzed by hydrogen chloride were treated with N,N’-dicyclohexylcarbodiimide and N-hydroxysuccinimide to activate the surfaces. We evaluated the relative activity of the enzyme immobilization processes, the introduction of spacers, crosslinking and enzyme immobilization and optimized these parameters. The introduction process was controlled to a bovine serum albumin concentration of 1.5% (w/v) and treatment time of 3 h. The crosslinking process was optimized to pH 10.0, a glutaraldehyde concentration of 3% (v/v) and a crosslinking time of 90 min. The immobilization conditions were maintained at pH 8.5, a temperature of 25℃, a time of 45 min and a trypsin concentration of 6% (o.w.f.).


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Gajanan S. Ghodake ◽  
Surendra K. Shinde ◽  
Ganesh D. Saratale ◽  
Rijuta G. Saratale ◽  
Min Kim ◽  
...  

The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 507
Author(s):  
Eduardo Troncoso-Ortega ◽  
Rosario del P. Castillo ◽  
Pablo Reyes-Contreras ◽  
Patricia Castaño-Rivera ◽  
Regis Teixeira Mendonça ◽  
...  

The objective of this study was to investigate structural changes and lignin redistribution in Eucalyptus globulus pre-treated by steam explosion under different degrees of severity (S0), in order to evaluate their effect on cellulose accessibility by enzymatic hydrolysis. Approximately 87.7% to 98.5% of original glucans were retained in the pre-treated material. Glucose yields after the enzymatic hydrolysis of pre-treated material improved from 19.4% to 85.1% when S0 was increased from 8.53 to 10.42. One of the main reasons for the increase in glucose yield was the redistribution of lignin as micro-particles were deposited on the surface and interior of the fibre cell wall. This information was confirmed by laser scanning confocal fluorescence and FT-IR imaging; these microscopic techniques show changes in the physical and chemical characteristics of pre-treated fibres. In addition, the results allowed the construction of an explanatory model for microscale understanding of the enzymatic accessibility mechanism in the pre-treated lignocellulose.


2005 ◽  
Vol 48 (spe) ◽  
pp. 135-142 ◽  
Author(s):  
Adriano Aguiar Mendes ◽  
Heizir Ferreira de Castro

The objective of this work was to evaluate the replacement of Gum Arabic for sodium chloride to reduce fat and organic contents in dairy wastewater using two low cost commercially available lipase preparations from animal source (Kin Master - LKM and Nuclear- LNU). The best performance was achieved when lipase Nuclear (LNU) was used as catalyst. In addition, this lipase preparation has also lower cost, which makes its use a quite promising technique for reduction of suspended solids as proteins and lipids contents found in wastewater generated by dairy industries.


2018 ◽  
Vol 1 ◽  
pp. 251522111878837 ◽  
Author(s):  
Mukesh Kumar Sinha ◽  
Biswa Ranjan Das

Chitosan derivatives are difficult to electrospun because they have poor flexibility of their polyelectrolyte chains. Based on extensive trails, we have successfully electrospun chitosan polymer and, subsequently, coated on non-woven polypropylene utilizing Nanospider technology. This experimentally developed nanofibrous webs of various densities were coated on non-woven fabric and, subsequently, stitched with activated carbon sphere (ACS) adhered composite fabric. Biological filtration and chemical protection were evaluated and the optimized density offering the highest value with meeting specified comfort was assessed. Results showed that optimized web morphology of 0.43 g m−2 is the best for integration with nuclear, biological and chemical absorbent layer of low ACS add-on in all aspects of comfort and protective behaviours. This will be meeting stringent defence protective requirements and lowering down the weight of suit by approximately 25%. An attempt has also been made in this research to protect from sulphur mustard chemical warfare agent by using both theories: (a) barrier techniques and (b) disintegrating the trapped molecules via functionalization of the web. Result shows that first molecules get trapped by in web layer (barrier effect) and subsequently destroyed by hydrolysis mechanism. Scanning microscopic image shows web is acting as barrier layer by trapping sulphur mustard particles. Optimized web of 0.43 g m−2 was functionalized with zinc (Zn) oxide and the presence of Zn particles was confirmed by imaging techniques. Crystalline and thermal analysis depicts that structural changes were found in sulphur mustard spotted functionalized web. Raman spectra show chemically disintegrated hydrolysed products of sulphur mustard. Bacterial filtration efficiency, antimicrobial and comfort properties were measured for assessing the introduction of nanowebs for biological protection and chemical protection in newly created multilayered fabric structure with low ACS add-on (180 g m−2). The initial encouraging outcome of this research expects whether the multilayered fabric could be introduced in the suit.


2015 ◽  
Vol 816 ◽  
pp. 536-546
Author(s):  
Vladimír Rudy ◽  
Andrea Lešková

This article deals about the challenges of structural changes in manufacturing conditions. The objective of this paper is to present the modular workstations concept based on miniaturization and re-configurability trends. The article is aimed at problems of designing of production systems with a modular construction structure. The modular structure allows an individual and flexible adaptation to varying requirements but also the realization of low-cost solutions for creation of new or modernized production base. The goal is to present the example of modular workstations solutions that correspond with new designing approach. The specification of basics principles, which should help to designing flexible manufacturing systems, discussed in this paper are: modularity; integrability; convertibility; diagnosability; customization. The theoretical part provides an overview of fundamental design principles in manufacturing structures. In the first part of this article are discussed the specification of basic flexibility types in production system and the main impacts influencing design of manufacturing structures. The closing section of the article provides the specification of example solution of adjustable production platform with modular frame (called desktop factory).


Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 266 ◽  
Author(s):  
Ehsan Moradi ◽  
Jesús Rodrigo-Comino ◽  
Enric Terol ◽  
Gaspar Mora-Navarro ◽  
Alexandre Marco da Silva ◽  
...  

Agricultural activities induce micro-topographical changes, soil compaction and structural changes due to soil cultivation, which directly affect ecosystem services. However, little is known about how these soil structural changes occur during and after the planting of orchards, and which key factors and processes play a major role in soil compaction due to cultivation works. This study evaluates the improved stock unearthing method (ISUM) as a low-cost and precise alternative to the tedious and costly traditional core sampling method, to characterize the changes in soil compaction in a representative persimmon orchard in Eastern Spain. To achieve this goal, firstly, in the field, undisturbed soil samples using metallic core rings (in January 2016 and 2019) were collected at different soil depths between 45 paired-trees, and topographic variations were determined following the protocol established by ISUM (January 2019). Our results show that soil bulk density (Bd) increases with depth and in the inter-row area, due to the effect of tractor passes and human trampling. The bulk density values of the top surface layers (0–12 cm) showed the lowest soil accumulation, but the highest temporal and spatial variability. Soil consolidation within three years after planting as calculated using the core samples was 12 mm, whereas when calculated with ISUM, it was 14 mm. The quality of the results with ISUM was better than with the traditional core method, due to the higher amount of sampling points. The ISUM is a promising method to measure soil compaction, but it is restricted to the land where soil erosion does not take place, or where soil erosion is measured to establish a balance of soil redistribution. Another positive contribution of ISUM is that it requires 24 h of technician work to acquire the data, whereas the core method requires 272 h. Our research is the first approach to use ISUM to quantify soil compaction and will contribute to applying innovative and low-cost monitoring methods to agricultural land and conserving ecosystem services.


2018 ◽  
Vol 165 (2) ◽  
pp. A206-A214 ◽  
Author(s):  
Fangbin Chen ◽  
Youhao Liao ◽  
Minsui Li ◽  
Jinhong Huang ◽  
Qiming Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document