Study of a newly structuralized meta-aramid/cotton blended yarn for fabrics with enhanced flame-resistance

2019 ◽  
Vol 90 (5-6) ◽  
pp. 489-502 ◽  
Author(s):  
Jie Feng ◽  
Min Zhang ◽  
Tao Hua ◽  
Ka Hei Chan

This paper presents a study on a newly structuralized meta-aramid/cotton blended yarn for fabrics with enhanced flame-resistance. In this study, a new type of “marl yarn” resembling structure for cotton/aramid yarns was proposed with an aim to lower the flammability of cotton fiber strands within the yarn and thus enhance the flame resistance of the blended yarns and the resultant fabrics. To facilitate the formation of marl yarn structure, a modified device was developed that can be attached to the ring spinning machine for yarn production. Yarn structure was examined and the effects of the blending ratio of aramid/cotton fibers and yarn structure on the yarn flammability and physical properties were investigated. The results showed that a marl-like yarn structure was formed wherein a small amount of meta-aramid fibers were concentrated to form fiber strands, which served as effective fire barriers, hindering the afterflame/afterglow of cotton fibers. The experimental results demonstrated that the marl structured yarn exhibited lower yarn flammability in terms of afterflame, afterglow, damage length and limiting oxygen index (LOI) as well as possessing similar physical properties compared with conventional evenly blended yarn. By using the marl structured yarns developed, meta-aramid/cotton blended woven fabrics were produced and their flammability and physical properties were evaluated. The results showed that the fabrics using the marl structured yarns had a higher minimal flame application time for ignition and LOI as well as a lower flame spread speed than fabrics using evenly blended yarns.

2020 ◽  
Vol 14 (4) ◽  
pp. 7622-7627
Author(s):  
S. A. S. Abdullah ◽  
N. Z. M. Zuhudi ◽  
K. D. Mohd Aris ◽  
M. N. Roslan ◽  
M. D. Isa

Spinning kenaf fibers into yarns is challenging due to the stiffness and lack of cohesiveness of the fibers. Alkali treatment is known to remove hemicellulose, wax, and breaks down lignin, reducing stiffness of kenaf fiber and improving its spinnability. Kenaf fibers were treated at percentages of 4% and 6% and blended with cotton fibers at blend ratios of 40:60 and 50:50 prior to a ring spinning process to produce a double ply yarn of 70 tex.  Yarn were twisted at three sets of twist. The responses were measured in terms of carding waste percentages and yarn strength. The results showed that the optimized yarn structural parameter is kenaf fiber treated at 6% and with a kenaf/cotton 40/60 blending ratio based on its tenacity and minimum carding waste. ANOVA shows that there is a good interaction effect between NaOH and kenaf/cotton ratio, and NaOH concentration and twist.


2019 ◽  
Vol 11 (2) ◽  
pp. 388-393
Author(s):  
Pallavi Lakhchaura ◽  
Manisha Gahlot ◽  
Anita Rani

In this study an attempt was made to utilize the oak tasar silk spinning waste through blending it with acrylic fibre and prepared yarn in mechanised spinning system.  The oak tasar silk and acrylic blended yarn were prepared on ring spinning machine with five different blend ratios viz. 100:0, 60:40, 50:50, 40:60 and 0:100. The prepared yarns were of medium to fine yarn count. Yarn Physical properties of yarns, unevenness and imperfections were studied and statistically analysed. Results revealed that the 100% acrylic and 50:50 tasar acrylic blended yarns had better properties as compared to 60:40 and 40:60. The addition of acrylic fibre content improved the physical properties, unevenness and imperfection of the blended yarns.


1999 ◽  
Vol 41 (2) ◽  
pp. 275
Author(s):  
SangSoo Park ◽  
Tae Hyung Kim ◽  
Sang Woo Song ◽  
Seong Gwon Kang ◽  
Soo Jin Huh ◽  
...  

2021 ◽  
pp. 152808372110042
Author(s):  
Partha Sikdar ◽  
Gajanan S Bhat ◽  
Doug Hinchliff ◽  
Shafiqul Islam ◽  
Brian Condon

The objective of this research was to produce elastomeric nonwovens containing cotton by the combination of appropriate process. Such nonwovens are in demand for use in several healthcare, baby care, and adult care products that require stretchability, comfort, and barrier properties. Meltblown fabrics have very high surface area due to microfibers and have good absorbency, permeability, and barrier properties. Spunbonding is the most economical process to produce nonwovens with good strength and physical properties with relatively larger diameter fibers. Incorporating cotton fibers into elastomeric nonwovens can enhance the performance of products, such as absorbency and comfort. There has not been any study yet to use such novel approaches to produce elastomeric cotton fiber nonwovens. A hydroentangling process was used to integrate cotton fibers into produced elastomeric spunbond and meltblown nonwovens. The laminated web structures produced by various combinations were evaluated for their physical properties such as weight, thickness, air permeability, pore size, tensile strength, and especially the stretch recovery. Incorporating cotton into elastic webs resulted in composite structures with improved moisture absorbency (250%-800%) as well as good breathability and elastic properties. The results also show that incorporating cotton can significantly increase tensile strength with improved spontaneous recovery from stretch even after the 5th cycle. Results from the experiments demonstrate that such composite webs with improved performance properties can be produced by commercially used processes.


2021 ◽  
Vol 16 ◽  
pp. 155892502110065
Author(s):  
Peng Cui ◽  
Yuan Xue ◽  
Yuexing Liu ◽  
Xianqiang Sun

Yarn-dyed textiles complement digital printing textiles, which hold promise for high production and environmentally friendly energy efficiencies. However, the complicated structures of color-blended yarns lead to unpredictable colors in textile products and become a roadblock to developing nonpollution textile products. In the present work, we propose a framework of intelligent manufacturing of color blended yarn by combining the color prediction algorithm with a self-developed computer numerically controlled (CNC) ring spinning system. The S-N model is used for the prediction of the color blending effect of the ring-spun yarn. The optimized blending ratios of ring-spun yarn are obtained based on the proposed linear model of parameter W. Subsequently, the CNC ring-spinning frame is used to manufacture color-blended yarns, which can configure the constituent fibers in such a way that different sections of yarn exhibit different colors.


2011 ◽  
Vol 321 ◽  
pp. 192-195
Author(s):  
Qing Bin Yang ◽  
Xiao Yang

In order to analysis the relationship between the strength and elongation and the blended ratio of SPF/Cotton blended yarn, the strength and elongation of SPF /cotton blended yarn with different blended ratio were measured and compared with the simple model. The results indicated that For the SPF/cotton blended yarn, the difference between the experimental data and the model value is remarkable because of the high cohesion of the cotton fibers.


2017 ◽  
Vol 48 (1) ◽  
pp. 87-118 ◽  
Author(s):  
MD Teli ◽  
Pintu Pandit

As far as the value addition of textile is concerned, flame retardancy of textile materials is considered to be one of the most important properties in textile finishing by both industries as well as academic researchers. Flame-retardant property with thermal stability was imparted to cotton by using green coconut ( Cocos nucifera Linn) shell extract, a natural waste source of coconut. Coconut shell extract was analyzed by high-performance liquid chromatography, Fourier transform infrared spectroscopy, energy-dispersive spectrometry and its phytochemical analysis was also carried out. The coconut shell extract (acidic after extraction) was applied in three different pH (acidic, neutral, and alkaline) conditions to the cotton fabric. Flame-retardant properties of the untreated and the treated cotton fabrics were analyzed by limiting oxygen index and vertical flammability. The study showed that all the treated fabrics had good flame resistance property compared to that of the untreated fabric. The limiting oxygen index value was found to increase by 72.2% after application of the coconut shell extract from alkaline pH. Pyrolysis and char formation behavior of the concerned fabrics were studied using thermogravimetric analysis and differential scanning calorimetric analysis in a nitrogen atmosphere. The physicochemical composition of the untreated and coconut shell extract treated cotton fabrics were analyzed by attenuated total reflection–Fourier transform infrared, scanning electron microscope, and energy-dispersive X-ray spectroscopy. Also, treated cotton fabric showed natural brown color and antibacterial property against both Gram-positive and Gram-negative bacteria. The durability of the flame-retardant functionality to washing with soap solution has also been studied and reported in this paper.


2019 ◽  
Vol 19 (1) ◽  
pp. 86-96
Author(s):  
R Maheswaran ◽  
V Srinivasan

Abstract The influence of Modal–cotton (MC) fibre blend ratio and ring frame machine parameters such as front top roller loading and break draft on the blended yarn properties has been studied. Compact MC blended yarn samples of 14.75 tex with three different MC fibre blend ratio has been produced in a LR 6 ring spinning frame fitted with Suessen Compact drafting system. A robust design optimisation to minimise the variations of the output yarn properties such as blended yarn tenacity, yarn unevenness and hairiness caused because of the variations in the material as well as machine setting parameters is achieved through the Taguchi parametric design approach. It is found that the maximum compact MC blended yarn tenacity is 23.76 g/tex, which is influenced very much by MC fibre blend ratio but meagrely by top roller loading and break draft. Similarly, the minimum 9.54 U% and 3.59 hairiness index are achieved with 100:0 and 70:30 MC fibre blend ratio, respectively, at 23-kg top roller loading. Statistical ANOVA analysis is performed on the results and optimum values are obtained within the 95% confidential level through confirmation experiments.


1961 ◽  
Vol 31 (6) ◽  
pp. 550-557 ◽  
Author(s):  
Rollin S. Orr ◽  
Albert W. Burgis ◽  
James N. Grant

Sign in / Sign up

Export Citation Format

Share Document