Influence of yarn parameters on cotton/kenaf blended yarn characteristics

2020 ◽  
Vol 14 (4) ◽  
pp. 7622-7627
Author(s):  
S. A. S. Abdullah ◽  
N. Z. M. Zuhudi ◽  
K. D. Mohd Aris ◽  
M. N. Roslan ◽  
M. D. Isa

Spinning kenaf fibers into yarns is challenging due to the stiffness and lack of cohesiveness of the fibers. Alkali treatment is known to remove hemicellulose, wax, and breaks down lignin, reducing stiffness of kenaf fiber and improving its spinnability. Kenaf fibers were treated at percentages of 4% and 6% and blended with cotton fibers at blend ratios of 40:60 and 50:50 prior to a ring spinning process to produce a double ply yarn of 70 tex.  Yarn were twisted at three sets of twist. The responses were measured in terms of carding waste percentages and yarn strength. The results showed that the optimized yarn structural parameter is kenaf fiber treated at 6% and with a kenaf/cotton 40/60 blending ratio based on its tenacity and minimum carding waste. ANOVA shows that there is a good interaction effect between NaOH and kenaf/cotton ratio, and NaOH concentration and twist.

2013 ◽  
Vol 779-780 ◽  
pp. 290-293
Author(s):  
An Fen Zhang ◽  
Zhao Peng Xia

The chemical modified jute fibres were spun into jute/cotton blended yarns by using of two different blending methods (the fibre blending and the sliver blending) on ring spinning system. The tensile, hairiness, Uster evenness properties of two kinds of blended yarns with different blend ratios and yarn counts were investigated in this paper. It was found that the tensile, hairiness index, mass irregularity and imperfections of blended yarn depended on amount of jute fibres in blends. The draw frame blended yarns processed the better quality than that of intimate blended yarns.


2019 ◽  
Vol 90 (5-6) ◽  
pp. 489-502 ◽  
Author(s):  
Jie Feng ◽  
Min Zhang ◽  
Tao Hua ◽  
Ka Hei Chan

This paper presents a study on a newly structuralized meta-aramid/cotton blended yarn for fabrics with enhanced flame-resistance. In this study, a new type of “marl yarn” resembling structure for cotton/aramid yarns was proposed with an aim to lower the flammability of cotton fiber strands within the yarn and thus enhance the flame resistance of the blended yarns and the resultant fabrics. To facilitate the formation of marl yarn structure, a modified device was developed that can be attached to the ring spinning machine for yarn production. Yarn structure was examined and the effects of the blending ratio of aramid/cotton fibers and yarn structure on the yarn flammability and physical properties were investigated. The results showed that a marl-like yarn structure was formed wherein a small amount of meta-aramid fibers were concentrated to form fiber strands, which served as effective fire barriers, hindering the afterflame/afterglow of cotton fibers. The experimental results demonstrated that the marl structured yarn exhibited lower yarn flammability in terms of afterflame, afterglow, damage length and limiting oxygen index (LOI) as well as possessing similar physical properties compared with conventional evenly blended yarn. By using the marl structured yarns developed, meta-aramid/cotton blended woven fabrics were produced and their flammability and physical properties were evaluated. The results showed that the fabrics using the marl structured yarns had a higher minimal flame application time for ignition and LOI as well as a lower flame spread speed than fabrics using evenly blended yarns.


2019 ◽  
Vol 11 (2) ◽  
pp. 388-393
Author(s):  
Pallavi Lakhchaura ◽  
Manisha Gahlot ◽  
Anita Rani

In this study an attempt was made to utilize the oak tasar silk spinning waste through blending it with acrylic fibre and prepared yarn in mechanised spinning system.  The oak tasar silk and acrylic blended yarn were prepared on ring spinning machine with five different blend ratios viz. 100:0, 60:40, 50:50, 40:60 and 0:100. The prepared yarns were of medium to fine yarn count. Yarn Physical properties of yarns, unevenness and imperfections were studied and statistically analysed. Results revealed that the 100% acrylic and 50:50 tasar acrylic blended yarns had better properties as compared to 60:40 and 40:60. The addition of acrylic fibre content improved the physical properties, unevenness and imperfection of the blended yarns.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2005
Author(s):  
Nur Farhani Ismail ◽  
Nabilah Afiqah Mohd Radzuan ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Che Hassan Che Haron

The use of kenaf fiber as a reinforcement material for polymer composites is gaining popularity, especially in the production of automotive components. The main objective of this current work is to relate the effect of alkali treatment on the single fiber itself and the composite material simultaneously. The effect of temperature condition during mechanical testing is also investigated. Composite materials with discontinuous natural kenaf fibers and epoxy resin were fabricated using a compression moulding process. The epoxy composites were reinforced with 50 wt% untreated and treated kenaf fibers. The kenaf fiber was treated with NaOH solution (6% by weight) for 24 h at room temperature. Kenaf fiber treated with NaOH treatment had a clean surface and no impurities. For the first time we can see that alkali treatment had a damaging effect on the mechanical properties of kenaf fibers itself and the treated kenaf/epoxy composites. The composite reinforced with untreated kenaf fiber and treated kenaf fiber showed increased tensile strength (72.85% and 12.97%, respectively) compared to the neat epoxy. Reinforcement of the composite with treated kenaf fiber decreased the tensile strength due to the fiber pull out and the formation of voids which weakens the adhesion between the fibers and matrix. The temperature conditions also play an important role in composites with a significant impact on the deterioration of composite materials. Treated kenaf fiber has thermal stability and is not sensitive to temperature and as a result reinforcement with treated kenaf gives a lower loss value of 76%.


2020 ◽  
pp. 1-10
Author(s):  
R. Sathish Kumar ◽  
Nivedhitha Muralidharan ◽  
Ravishankar Sathyamurthy

2021 ◽  
Vol 16 ◽  
pp. 155892502110065
Author(s):  
Peng Cui ◽  
Yuan Xue ◽  
Yuexing Liu ◽  
Xianqiang Sun

Yarn-dyed textiles complement digital printing textiles, which hold promise for high production and environmentally friendly energy efficiencies. However, the complicated structures of color-blended yarns lead to unpredictable colors in textile products and become a roadblock to developing nonpollution textile products. In the present work, we propose a framework of intelligent manufacturing of color blended yarn by combining the color prediction algorithm with a self-developed computer numerically controlled (CNC) ring spinning system. The S-N model is used for the prediction of the color blending effect of the ring-spun yarn. The optimized blending ratios of ring-spun yarn are obtained based on the proposed linear model of parameter W. Subsequently, the CNC ring-spinning frame is used to manufacture color-blended yarns, which can configure the constituent fibers in such a way that different sections of yarn exhibit different colors.


2021 ◽  
pp. 009524432110153
Author(s):  
Jaber Mirzaei ◽  
Abdolhossein Fereidoon ◽  
Ahmad Ghasemi-Ghalebahman

In this study, the mechanical properties of polypropylene (PP)-based nanocomposites reinforced with graphene nanosheets, kenaf fiber, and polypropylene-grafted maleic anhydride (PP-g-MA) were investigated. Response surface methodology (RSM) based on Box–Behnken design (BBD) was used as the experimental design. The blends fabricated in three levels of parameters include 0, 0.75, and 1.5 wt% graphene nanosheets, 0, 7.5, and 15 wt% kenaf fiber, and 0, 3, and 6 wt% PP-g-MA, prepared by an internal mixer and a hot press machine. The fiber length was 5 mm and was being constant for all samples. Tensile, flexural, and impact tests were conducted to determine the blend properties. The purpose of this research is to achieve the highest mechanical properties of the considered nanocomposite blend. The addition of graphene nanosheets to 1 wt% increased the tensile, flexural, and impact strengths by 16%, 24%, and 19%, respectively, and an addition up to 1.5 wt% reduced them. With further addition of graphene nanosheets until 1.5 wt%, the elastic modulus was increased by 70%. Adding the kenaf fiber up to 15 wt% increased the elastic modulus, tensile, flexural, and impact strength by 24%, 84%, 18%, and 11%, respectively. The addition of PP-g-MA has increased the adhesion, dispersion and compatibility of graphene nanosheets and kenaf fibers with matrix. With 6 wt% PP-g-MA, the tensile strength and elastic modulus were increased by 18% and 75%, respectively. The addition of PP-g-MA to 5 wt% increased the flexural and impact strengths by 10% and 5%, respectively. From the entire experimental data, the optimum values for elastic modulus, as well as, tensile, flexural, and impact strengths in the blends were obtained to be 4 GPa, 33.7896 MPa, 57.6306 MPa, and 100.1421 J/m, respectively. Finally, samples were studied by FE-SEM to check the dispersion of graphene nanosheets, PP-g-MA and kenaf fibers in the polymeric matrix.


2011 ◽  
Vol 145 ◽  
pp. 1-5 ◽  
Author(s):  
K.W. Neoh ◽  
Kim Yeow Tshai ◽  
P.S. Khiew ◽  
Chin Hua Chia

Extensive environmental concern associated with the disposal of solid plastic wastes has stirred tremendous interest in the production and use of sustainable biodegradable polymers. Among the vast variety of available materials, Polylactic Acid (PLA) standout as the most commercially viable mass produced resin to date. However, its low thermal and mechanical stability, excessive brittleness, and relatively higher cost have led to numerous research efforts in producing biodegradable polymer composite filled with natural organic fibers. This paper describes the preparation and the mechanical characteristics of a compression molded biodegradable composite made entirely of renewable raw materials. The composites were reinforced with pulverized palm, kenaf and alkali (1M NaOH:fiber in ratio 2:1) treated kenaf fibers, at a fiber mass proportion of 20 to 60% blended PLA and processed in a custom-built compression mold. SEM microscan revealed that the kenaf fiber has a mean diameter of 40μm, length 1236.6μm, and aspect ratio of 31 while the measured values for palm fiber was 58.7μm, 1041.2μm, and 17.7, respectively. All resulting composites showed significant enhancement in tensile strength. At 20, 40 and 60% fiber loading, the palm/PLA composite recorded tensile strength increment of 46.9, 47.8 and 36.6%, respectively. For the kenaf/PLA composite, greatest improvement was achieved at 40% fiber loading with alkali treated kenaf, with approximately 54% higher than the neat PLA while only 12.6% was recorded for the non-treated kenaf/PLA composite, signifying that the surface modification greatly improved fiber-matrix adhesion. SEM observations on the fracture surface showed similar findings. Compared to commercially available palm/Polypropylene (palm/PP) composite at 50% fiber loading, our measured tensile strength for the PLA composite loaded with 40% alkali treated kenaf fiber was still about 20% lower. Further enhancement in the mechanical characteristic of the kenaf/PLA composite is required to push for its wider utilization in the polymer industry.


2011 ◽  
Vol 321 ◽  
pp. 192-195
Author(s):  
Qing Bin Yang ◽  
Xiao Yang

In order to analysis the relationship between the strength and elongation and the blended ratio of SPF/Cotton blended yarn, the strength and elongation of SPF /cotton blended yarn with different blended ratio were measured and compared with the simple model. The results indicated that For the SPF/cotton blended yarn, the difference between the experimental data and the model value is remarkable because of the high cohesion of the cotton fibers.


2019 ◽  
Vol 36 (1) ◽  
pp. 47-62
Author(s):  
AR Mohammed ◽  
MS Nurul Atiqah ◽  
Deepu A Gopakumar ◽  
MR Fazita ◽  
Samsul Rizal ◽  
...  

Natural fiber-reinforced composites gained considerable interest in the scientific community due to their eco-friendly nature, cost-effective, and excellent mechanical properties. Here, we reported a chemical modification of kenaf fiber using propionic anhydride to enhance the compatibility with the epoxy matrix. The incorporation of the modified woven and nonwoven kenaf fibers into the epoxy matrix resulted in the improvement of the thermal and mechanical properties of the composite. The thermal stability of the epoxy composites was enhanced from 403°C to 677°C by incorporating modified woven kenaf fibers into the epoxy matrix. The modified and unmodified woven kenaf fiber-reinforced epoxy composites had a tensile strength of 64.11 and 58.82 MPa, respectively. The modified woven composites had highest flexural strength, which was 89.4 MPa, whereas, for unmodified composites, it was 86.8 MPa. The modified woven fiber-reinforced epoxy composites showed the highest value of flexural modulus, which was 6.0 GPa compared to unmodified woven composites (5.51 GPa). The impact strength of the epoxy composites was enhanced to 9.43 kJ m−2 by the incarnation of modified woven kenaf fibers into epoxy matrix. This study will be an effective platform to design the chemical modification strategy on natural fibers for enhancing the compatibility toward the hydrophobic polymer matrices.


Sign in / Sign up

Export Citation Format

Share Document