The effect of OMMT reinforcement and annealing treatment on mechanical and thermal properties of Polyurethane Copolymer nanocomposites

2021 ◽  
pp. 009524432110588
Author(s):  
Muayad Albozahid ◽  
Haneen Naji ◽  
Zoalfokkar Alobad ◽  
Alberto Saiani

This study focuses on a new fabrication of nanocomposite based on Polyurethane Copolymer (PUC) intercalated with organo-modified montmorillonite nanoparticles (OMMT), via an efficient combination of solution mixing and melt blending processes. The combination of solution mixing and melt interaction processes produced PUC/OMMT nanocomposites with enhanced properties. The OMMT filled PUC was characterised by TEM and tensile test. The effect of thermal treatment process was also studied due to subsequent microphase separation of PUC resulting from microdomain miscibility. TEM observation recognised a decent dispersion state of OMMT within PUC, owing to their exfoliated and intercalated structure. This morphology was greatly influenced by induced thermal treatment. The dynamic mechanical thermal analysis (DMTA) revealed that storage modulus and glass transition temperature of the nanocomposites increased with OMMT incorporation. The tensile modulus and tensile strength of nanocomposites showed an improvement with the addition of OMMT.

2017 ◽  
Vol 37 (4) ◽  
pp. 335-343 ◽  
Author(s):  
Yottha Srithep ◽  
Dutchanee Pholharn ◽  
Onpreeya Veang-in ◽  
Suphan Yangyuen

Abstract Poly(vinyl alcohol) (PVOH) resin is one of the most widely used water-soluble biodegradable polymer. Because of thermal degradation, PVOH exhibits limited melt processing and lacks moldability. The effects of adding glycerol as plasticizer and banana fibers (BF) to PVOH on its moldability and mechanical property were investigated. Melt blending of PVOH with glycerol and/or BF was performed in an internal mixer. The blended materials were then compression molded to produce tensile specimens. Various characterization techniques were employed to study the mechanical properties, compatibility, and crystallization behavior of the PVOH blends. By melt blending with glycerol, PVOH could be processed but decreased the tensile modulus, tensile strength, and crystallization temperature. Furthermore, the addition of BF enhanced the mechanical and thermal properties and crystallization temperature of plasticized PVOH due to compatibility between the two components. Apart from enhancing the mechanical properties and thermal stability, the incorporation of BF can reduce the production cost.


2013 ◽  
Vol 33 (6) ◽  
pp. 489-500 ◽  
Author(s):  
Ranjana Sharma ◽  
Purnima Jain ◽  
Susmita Dey Sadhu ◽  
Bikramjit Kaur

Abstract Elastomer toughened poly(butylene terephthalate) (PBT)/organoclay [Cloisite 30B, organo-montmorillonite (OMMT)] nanocomposites were prepared via melt blending using a micro-compounder. In this work, two types of impact modifiers, ultra low density polyethylene grafted glycidyl methacrylate (ULDPE-g-GMA, IM1) and ethylene-methyl acrylate-glycidyl methacrylate (E-MA-GMA, IM2) were used, and a detailed comparison of the effect of both was made. With respect to the impact strength, 2 wt% of ULDPE-g-GMA produced a better result as compared to 2 wt% E-MA-GMA. Therefore, 2 wt% of ULDPE-g-GMA is considered as the optimized percentage for the preparation of nanocomposites. Being an impact modifier, ULDPE-g-GMA decreases the yield stress, tensile modulus and breaking strength of pure PBT. This issue was addressed in this paper by using organoclay, which may improve the tensile properties of PBT materials. The content of ULDPE-g-GMA was kept constant, whereas organoclay (OMMT) content was varied from 2 to 5 wt% in nanocomposites. The melting and crystallization behavior of pure PBT, impact modified PBT and its nanocomposites were studied by differential scanning calorimetry (DSC). Crystalline morphology was investigated using polarizing optical microscopy (POM) at 185°C, 195°C, and 205°C crystallization temperatures. The optimum increase in tensile modulus of the elastomer toughened PBT nanocomposites was seen with a 3 wt% addition of organoclay.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 754
Author(s):  
Jantrawan Pumchusak ◽  
Nonthawat Thajina ◽  
Watcharakorn Keawsujai ◽  
Pattarakamon Chaiwan

This work aims to explore the effect of organo-modified montmorillonite nanoclay (O-MMT) on the mechanical, thermo-mechanical, and thermal properties of carbon fiber-reinforced phenolic composites (CFRP). CFRP at variable O-MMT contents (from 0 to 2.5 wt%) were prepared. The addition of 1.5 wt% O-MMT was found to give the heat resistant polymer composite optimum properties. Compared to the CFRP, the CFRP with 1.5 wt% O-MMT provided a higher tensile strength of 64 MPa (+20%), higher impact strength of 49 kJ/m2 (+51%), but a little lower bending strength of 162 MPa (−1%). The composite showed a 64% higher storage modulus at 30 °C of 6.4 GPa. It also could reserve its high modulus up to 145 °C. Moreover, it had a higher heat deflection temperature of 152 °C (+1%) and a higher thermal degradation temperature of 630 °C. This composite could maintain its mechanical properties at high temperature and was a good candidate for heat resistant material.


2014 ◽  
Vol 970 ◽  
pp. 312-316
Author(s):  
Sujaree Tachaphiboonsap ◽  
Kasama Jarukumjorn

Thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend and thermoplastic starch (TPS)/poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend were prepared by melt blending method. PLA grafted with maleic anhydride (PLA-g-MA) was used as a compatibilizer to improve the compatibility of the blends. As TPS was incorporated into PLA, elongation at break was increased while tensile strength, tensile modulus, and impact strength were decreased. Tensile properties and impact properties of TPS/PLA blend were improved with adding PLA-g-MA indicating the enhancement of interfacial adhesion between PLA and TPS. With increasing PBAT content, elongation at break and impact strength of TPS/PLA blends were improved. The addition of TPS decreased glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA. Tgand Tcof TPS/PLA blend were decreased by incorporating PLA-g-MA. However, the presence of PBAT reduced Tcof TPS/PLA blend. Thermal properties of TPS/PLA/PBAT blends did not change with increasing PBAT content. SEM micrographs revealed that the compatibilized TPS/PLA blends exhibited finer morphology when compared to the uncompatibilized TPS/PLA blend.


2013 ◽  
Vol 747 ◽  
pp. 645-648 ◽  
Author(s):  
Koay Seong Chun ◽  
Salmah Husseinsyah ◽  
Hakimah Osman

Polypropylene/Cocoa Pod Husk (PP/CPH) biocomposites with different maleated polypropylene (MAPP) content were prepared via melt blending process using Brabender Plastrograph mixer. The tensile strength and tensile modulus of PP/CPH biocomposites increased with increasing of MAPP content. The PP/CPH biocomposites with 5 phr of MAPP showed the optimum improvement on tensile properties. However, the increased of MAPP content reduced the elongation at break of PP/CPH biocomposites. At 5 phr of MAPP content, PP/CPH biocomposites showed lowest elongation at break. Scanning electron microscope confirms the PP/CPH biocomposites with MAPP have better filler-matrix interaction and adhesion due to the effect of MAPP.


2018 ◽  
pp. 655 ◽  
Author(s):  
Wei Chien ◽  
Chi-Yu Lin ◽  
Shang-Te Tsai ◽  
Cheng-Fu Yang ◽  
Chiu-Chen Chang ◽  
...  

2017 ◽  
Vol 24 (4) ◽  
pp. 599-607 ◽  
Author(s):  
Xinhao Gong ◽  
Tingwei Wang

AbstractVarious ceramifiable ethylene-vinyl acetate copolymer (EVA) composites were prepared by melt blending with two kinds of glass frits, organically modified montmorillonite (OMMT) and whitened and capsulised red phosphorus (WCRP). The influence of different filler components and firing temperatures on the ceramifiable properties of the composites was studied. The dripping behaviour of the composites was analyzed by a vertical burning test. The microstructure of the residues was characterised by X-ray diffraction (XRD) and scanning electron microscopy. The results showed that the optimised EVA composite was free of melt dripping during burning with the addition of OMMT. A dimensionally stable and dense ceramic residue was also obtained, especially with the addition of WCRP. It was suggested that new phases were formed at firing temperatures, and WCRP could promote the formation of ceramic body which was not fused during firing at 900°C as evidenced by XRD.


2009 ◽  
Vol 610-613 ◽  
pp. 299-303
Author(s):  
Shu Quan Liang ◽  
Yan Tang ◽  
Yong Zhang ◽  
Zhong Jie ◽  
Xiao Pin Tan

Silver / CNTs was prepared by ball milling method and was used as filler to reinforce epoxide resin based conductive adhesive. The effect of content and dispersion state of the filler on tensile strength, tensile modulus, fracture extensibility and electrical resistance of the composites were studied. The results indicated that the filler could be dispersed well in epoxide resin matrix by ultrasonic method and the mechanical and electrical properties was improved greatly. The best content of the silver / CNTs was 0.75 wt% (considering of CNTs weight percentage), when the tensile strength, tensile modulus and fracture extensibility increased 42.6%, 18.8% and 115.3% respectively. With the increase of silver/CNTs, the conductivity of the matrix increased significantly. The micro structure analyses showed that the silver-covered CNTs worked as conductive channel and the electrons were easy to transfer through silver powder by CNTs network.


2018 ◽  
Vol 5 (7) ◽  
pp. 1714-1720 ◽  
Author(s):  
Long Li ◽  
Hongli Hu ◽  
Shujiang Ding

A NiMn2O4 NSs@rGO nanocomposite was successfully fabricated through a facile co-precipitation and thermal treatment process, which exhibits enhanced energy storage performance.


2017 ◽  
Vol 24 (1) ◽  
pp. 46-52
Author(s):  
Hye Moon Lee ◽  
Hye Young Koo ◽  
Sangsun Yang ◽  
Dahee Park ◽  
Sooho Jung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document