Characterizing Guardrail Steel for LS-DYNA3D Simulations

Author(s):  
Amy E. Wright ◽  
Malcolm H. Ray

Finite-element models have three parts: geometry, connections, and material properties. As the visible parts of a model, geometry and connections are generally carefully considered. Material properties often are not chosen with the same degree of care although they are equally important to obtaining good results. Accurate simulations of vehicles striking roadside hardware require an understanding of both the material behavior and the mathematical material models in LS-DYNA3D. A method for comparing LS-DYNA3D simulations with typical ASTM materials tests is described. The behavior and modeling parameters of guardrail steel (AASHTO M-180 Class A Type II) are examined in this study. Experimental and simulation results of quasistatic coupon tests are compared for AASHTO M-180 Class A Type II guardrail steel, and parameters for guardrail steel are recommended.

Author(s):  
Dalong Li ◽  
Mariusz Ziejewski ◽  
Ghodrat Karami

Crash analysis and head injury biomechanics are very important fields in biomedical research due to the devastating consequences of traumatic brain injuries (TBI). Complex geometry and constitutive models of multiple materials can be combined with the loading conditions in finite element head model to study the dynamic behavior of brain and the TBI. In such a modeling, the proper regional material properties of brain tissues are important. Brain tissues material properties have not been finally determined by experiments, and large variations in the test data still exist and the data is very much situation-dependent. Therefore, parametric analysis should be performed to study the relationship between the material properties and the brain response. The main purpose of presenting this paper is to identify the influence of material constitutive properties on brain impact response, to search for an improved material model and to arrive at a better correlation between the finite element model and the cadaver tests data. In this paper a 3-D nonlinear finite element method will be used to study the dynamic response of the human head under dynamic loading. The finite element formulation includes detailed model of the skull, brain, cerebral-spinal fluid (CSF), dura mater, pia mater, falx and tentorium membranes. The brain is modeled as linear viscoelastic material, whereas linear elastic material behavior is assumed for all the other tissue components. The proper contact and compatibility conditions between different components have been implemented in the modeling procedure. The results for the direct frontal impacts will be shown for three groups of material parameters. The parametrical analysis of tissue material models allows to examines the accuracy of three different set of material parameters for brain in a comparison with the prediction of the head dynamic response of Nahum's human cadaver direct impact experiment. Three sets of suggested material parameters are examined. It is concluded that although all three groups of material models will follow the dynamic behavior of the head and brain behavior, but the parametric data considered in this paper have a closer resemblance to the experimental behavior.


Author(s):  
Haolei Mou ◽  
Zhenyu Feng ◽  
Jiang Xie ◽  
Jun Zou ◽  
Kun Zhou

AbstractTo analysis the failure and energy absorption of carbon fiber reinforced polymer (CFRP) thin-walled square tube, the quasi-static axial compression loading tests are conducted for [±45]3s square tube, and the square tube after test is scanned to further investigate the failure mechanism. Three different finite element models, i.e. single-layer shell model, multi-layer shell model and stacked shell mode, are developed by using the Puck 2000 matrix failure criterion and Yamada Sun fiber failure criterion, and three models are verified and compared according to the experimental energy absorption metrics. The experimental and simulation results show that the failure mode of [±45]3s square tube is the local buckling failure mode, and the energy are absorbed mainly by intralaminar and interlaminar delamination, fiber elastic deformation, fiber debonding and fracture, matrix deformation cracking and longitudinal crack propagation. Three different finite element models can reproduce the collapse behaviours of [±45]3s square tube to some extent, but the stacked shell model can better reproduce the failure mode, and the difference of specific energy absorption (SEA) is minimum, which shows the numerical simulation results are in better agreement with the test results.


1996 ◽  
Vol 118 (4) ◽  
pp. 473-481 ◽  
Author(s):  
Michael R. Bryant ◽  
Peter J. McDonnell

Membrane inflation tests were performed on fresh, intact human corneas using a fiber optic displacement probe to measure the apical displacements. Finite element models of each test were used to identify the material properties for four different constitutive laws commonly used to model corneal refractive surgery. Finite element models of radial keratotomy using the different best-fit constitutive laws were then compared. The results suggest that the nonlinearity in the response of the cornea is material rather than geometric, and that material nonlinearity is important for modeling refractive surgery. It was also found that linear transverse isotropy is incapable of representing the anisotropy that has been experimentally measured by others, and that a hyperelastic law is not suitable for modeling the stiffening response of the cornea.


2014 ◽  
Vol 1648 ◽  
Author(s):  
Michael Culler ◽  
Keri A. Ledford ◽  
Jason H. Nadler

ABSTRACTRemora fish are capable of fast, reversible and reliable adhesion to a wide variety of both natural and artificial marine hosts through a uniquely evolved dorsal pad. This adhesion is partially attributed to suction, which requires a robust seal between the pad interior and the ambient environment. Understanding the behavior of remora adhesion based on measurable surface parameters and material properties is a critical step when creating artificial, bio-inspired devices. In this work, structural and fluid finite element models (FEM) based on a simplified “unit cell” geometry were developed to predict the behavior of the seal with respect to host/remora surface topology and tissue material properties.


Author(s):  
Joonas Ponkala ◽  
Mohsin Rizwan ◽  
Panos S. Shiakolas

The current state of the art in coronary stent technology, tubular structures used to keep the lumen open, is mainly populated by metallic stents coated with certain drugs to increase biocompatibility, even though experimental biodegradable stents have appeared in the horizon. Biodegradable polymeric stent design necessitates accurate characterization of time dependent polymer material properties and mechanical behavior for analysis and optimization. This manuscript presents the process for evaluating material properties for biodegradable biocompatible polymeric composite poly(diol citrate) hydroxyapatite (POC-HA), approaches for identifying material models and three dimensional solid models for finite element analysis and fabrication of a stent. The developed material models were utilized in a nonlinear finite element analysis to evaluate the suitability of the POC-HA material for coronary stent application. In addition, the advantages of using femtosecond laser machining to fabricate the POC-HA stent are discussed showing a machined stent. The methodology presented with additional steps can be applied in the development of a biocompatible and biodegradable polymeric stents.


2002 ◽  
Vol 124 (3) ◽  
pp. 734-744 ◽  
Author(s):  
Ihab M. Hanna ◽  
John S. Agapiou ◽  
David A. Stephenson

The HSK toolholder-spindle connection was developed to overcome shortcomings of the 7/24 steep-taper interface, especially at higher speeds. However, the HSK system was standardized quickly, without detailed evaluation based on operational experience. Several issues concerning the reliability, maintainability, and safety of the interface have been raised within the international engineering community. This study was undertaken to analytically investigate factors which influence the performance and limitations of the HSK toolholder system. Finite Element Models were created to analyze the effects of varying toolholder and spindle taper geometry, axial spindle taper length, drawbar/clamping load, spindle speed, applied bending load, and applied torsional load on HSK toolholders. Outputs considered include taper-to-taper contact pressures, taper-to-taper clearances, minimum drawbar forces, interface stiffnesses, and stresses in the toolholder. Static deflections at the end of the holder predicted by the models agreed well with measured values. The results showed that the interface stiffness and load-carrying capability are significantly affected by taper mismatch and dimensional variations, and that stresses in the toolholder near the drive slots can be quite high, leading to potential fatigue issues for smaller toolholders subjected to frequent clamping-unclamping cycles (e.g., in high volume applications). The results can be used to specify minimum toolholder material properties for critical applications, as well as drawbar design and spindle/toolholder gaging guidelines to increase system reliability and maintainability.


2021 ◽  
Author(s):  
Zwelihle Ndlovu ◽  
Dawood Desai ◽  
Thanyani Pandelani ◽  
Harry Ngwangwa ◽  
Fulufhelo Nemavhola

This study assesses the modelling capabilities of four constitutive hyperplastic material models to fit the experimental data of the porcine sclera soft tissue. It further estimates the material parameters and discusses their applicability to a finite element model by examining the statistical dispersion measured through the standard deviation. Fifteen sclera tissues were harvested from porcine’ slaughtered at an abattoir and were subjected to equi-biaxial testing. The results show that all the four material models yielded very good correlations at correlations above 96 %. The polynomial (anisotropic) model gave the best correlation of 98 %. However, the estimated material parameters varied widely from one test to another such that there would be needed to normalise the test data to avoid long optimisation processes after applying the average material parameters to finite element models. However, for application of the estimated material parameters to finite element models, there would be needed to consider normalising the test data to reduce the search region for the optimisation algorithms. Although the polynomial (anisotropic) model yielded the best correlation, it was found that the Choi-Vito had the least variation in the estimated material parameters thereby making it an easier option for application of its material parameters to a finite element model and also requiring minimum effort in the optimisation procedure. For the porcine sclera tissue, it was found that the anisotropy more influenced by the fiber-related properties than the background material matrix related properties.


Author(s):  
Lý Hùng Anh ◽  
Nguyễn Phụ Thượng Lưu ◽  
Nguyễn Thiên Phú ◽  
Trần Đình Nhật

The experimental method used in a frontal crash of cars costs much time and expense. Therefore, numerical simulation in crashworthiness is widely applied in the world. The completed car models contain a lot of parts which provided complicated structure, especially the rear of car models do not contribute to behavior of frontal crash which usually evaluates injuries of pedestrian or motorcyclist. In order to save time and resources, a simplification of the car models for research simulations is essential with the goal of reducing approximately 50% of car model elements and nodes. This study aims to construct the finite element models of front structures of vehicle based on the original finite element models. Those new car models must be maintained important values such as mass and center of gravity position. By using condition boundaries, inertia moment is kept unchanged on new model. The original car models, which are provided by the National Crash Analysis Center (NCAC), validated by using results from experimental crash tests. The modified (simplistic) vehicle FE models are validated by comparing simulation results with experimental data and simulation results of the original vehicle finite element models. LS-Dyna software provides convenient tools and very strong to modify finite element model. There are six car models reconstructed in this research, including 1 Pick-up, 2 SUV and 3 Sedan. Because car models were not the main object to evaluate in a crash, energy and behavior of frontal part have the most important role. As a result, six simplified car models gave reasonable outcomes and reduced significantly the number of nodes and elements. Therefore, the simulation time is also reduced a lot. Simplified car models can be applied to the upcoming frontal simulations.


2018 ◽  
Vol 3 (1) ◽  
pp. 13-20
Author(s):  
Dávid Huri

Automotive rubber products are subjected to large deformations during working conditions, they often contact with other parts and they show highly nonlinear material behavior. Using finite element software for complex analysis of rubber parts can be a good way, although it has to contain special modules. Different types of rubber materials require the curve fitting possibility and the wide range choice of the material models. It is also important to be able to describe the viscoelastic property and the hysteresis. The remeshing possibility can be a useful tool for large deformation and the working circumstances require the contact and self contact ability as well. This article compares some types of the finite element software available on the market based on the above mentioned features.


Bridge is a key element in any transportation system which provides easy access over physical obstacles like road, valley, water bodies etc. without closing the way underneath. Among various types, use of box girder type bridges are gaining popularity in bridge engineering because of its better stability, serviceability, economy, aesthetics, structural efficiency and rigidity in torsion. In this study, a box girder is analyzed by changing its web inclination angle to the horizontal (90°, 83°, 76°, 69°, 62°) using finite element based software CSi Bridge. Finite element models are developed keeping material properties, span length, boundary conditions as constant parameters. All these models are analyzed for self-weight, including load of wearing coat and crash barrier, and live loads specified by Indian Road Congress (IRC) namely IRC Class 70R and IRC Class-A loading. Responses in terms of torsional moment, longitudinal moment, support reactions, displacement and stresses are determined.


Sign in / Sign up

Export Citation Format

Share Document