Activity of Corilagin on Post-Parasiticide Liver Fibrosis in Schistosomiasis Animal Model

2013 ◽  
Vol 26 (1) ◽  
pp. 85-92 ◽  
Author(s):  
Y.-F. Huang ◽  
S.-L. Zhang ◽  
F. Jin ◽  
D. Cheng ◽  
Y.-P. Zhou ◽  
...  

This study investigates the effects and possible molecular mechanisms of corilagin extraction on prevention of Schistosoma japonicum ova-induced granulomas and liver fibrosis. As a result, under a light microscope, when compared to a model group, the corilagin group showed smaller granulomas, less liver cell denaturation and less inflammatory cell infiltration, and the connective tissues were significantly decreased. By Masson staining, the liver sections from the corilagin group showed less collagen distributed around granulomas, decreased liver fibrosis in the portal tracts and less formed interlobular tissue. The expression of hydroxyproline, IL-13 in liver and GATA3 in spleen in the model group was significantly higher than that in the normal group (P<0.05 or 0.01), while the level of hydroxyproline, IL-13 and GATA3 in the corilagin group were significantly lower than that in the model group (P<0.05). In conclusion, corilagin extraction can decrease the level of Th2-associated profibrotic cytokine IL-13, and down-regulate the transcription of GATA3 mRNA in spleen cells, which alleviate the hepatic fibrosis caused by egg granuloma in Schistosoma japonicum infection.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Biting Wang ◽  
Zengrui Wu ◽  
Weihua Li ◽  
Guixia Liu ◽  
Yun Tang

Abstract Background The traditional Chinese medicine Huangqi decoction (HQD) consists of Radix Astragali and Radix Glycyrrhizae in a ratio of 6: 1, which has been used for the treatment of liver fibrosis. In this study, we tried to elucidate its action of mechanism (MoA) via a combination of metabolomics data, network pharmacology and molecular docking methods. Methods Firstly, we collected prototype components and metabolic products after administration of HQD from a publication. With known and predicted targets, compound-target interactions were obtained. Then, the global compound-liver fibrosis target bipartite network and the HQD-liver fibrosis protein–protein interaction network were constructed, separately. KEGG pathway analysis was applied to further understand the mechanisms related to the target proteins of HQD. Additionally, molecular docking simulation was performed to determine the binding efficiency of compounds with targets. Finally, considering the concentrations of prototype compounds and metabolites of HQD, the critical compound-liver fibrosis target bipartite network was constructed. Results 68 compounds including 17 prototype components and 51 metabolic products were collected. 540 compound-target interactions were obtained between the 68 compounds and 95 targets. Combining network analysis, molecular docking and concentration of compounds, our final results demonstrated that eight compounds (three prototype compounds and five metabolites) and eight targets (CDK1, MMP9, PPARD, PPARG, PTGS2, SERPINE1, TP53, and HIF1A) might contribute to the effects of HQD on liver fibrosis. These interactions would maintain the balance of ECM, reduce liver damage, inhibit hepatocyte apoptosis, and alleviate liver inflammation through five signaling pathways including p53, PPAR, HIF-1, IL-17, and TNF signaling pathway. Conclusions This study provides a new way to understand the MoA of HQD on liver fibrosis by considering the concentrations of components and metabolites, which might be a model for investigation of MoA of other Chinese herbs.


2021 ◽  
Vol 22 (2) ◽  
pp. 930
Author(s):  
Mikihito Kajiya ◽  
Hidemi Kurihara

Periodontal disease, one of the most prevalent human infectious diseases, is characterized by chronic inflammatory tissue destruction of the alveolar bone and the connective tissues supporting the tooth [...]


2006 ◽  
Vol 291 (5) ◽  
pp. G877-G884 ◽  
Author(s):  
Pau Sancho-Bru ◽  
Ramón Bataller ◽  
Jordi Colmenero ◽  
Xavier Gasull ◽  
Montserrat Moreno ◽  
...  

Catecholamines participate in the pathogenesis of portal hypertension and liver fibrosis through α1-adrenoceptors. However, the underlying cellular and molecular mechanisms are largely unknown. Here, we investigated the effects of norepinephrine (NE) on human hepatic stellate cells (HSC), which exert vasoactive, inflammatory, and fibrogenic actions in the injured liver. Adrenoceptor expression was assessed in human HSC by RT-PCR and immunocytochemistry. Intracellular Ca2+ concentration ([Ca2+]i) was studied in fura-2-loaded cells. Cell contraction was studied by assessing wrinkle formation and myosin light chain II (MLC II) phosphorylation. Cell proliferation and collagen-α1(I) expression were assessed by [3H]thymidine incorporation and quantitative PCR, respectively. NF-κB activation was assessed by luciferase reporter gene and p65 nuclear translocation. Chemokine secretion was assessed by ELISA. Normal human livers expressed α1A-adrenoceptors, which were markedly upregulated in livers with advanced fibrosis. Activated human HSC expressed α1A-adrenoceptors. NE induced multiple rapid [Ca2+]i oscillations (Ca2+ spikes). Prazosin (α1-blocker) completely prevented NE-induced Ca2+ spikes, whereas propranolol (nonspecific β-blocker) partially attenuated this effect. NE caused phosphorylation of MLC II and cell contraction. In contrast, NE did not affect cell proliferation or collagen-α1(I) expression. Importantly, NE stimulated the secretion of inflammatory chemokines (RANTES and interleukin-8) in a dose-dependent manner. Prazosin blocked NE-induced chemokine secretion. NE stimulated NF-κB activation. BAY 11-7082, a specific NF-κB inhibitor, blocked NE-induced chemokine secretion. We conclude that NE stimulates NF-κB and induces cell contraction and proinflammatory effects in human HSC. Catecholamines may participate in the pathogenesis of portal hypertension and liver fibrosis by targeting HSC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jingyao Cai ◽  
Min Hu ◽  
Zhiyang Chen ◽  
Zeng Ling

AbstractLiver fibrosis occurs in response to any etiology of chronic liver injury. Lack of appropriate clinical intervention will lead to liver cirrhosis or hepatocellular carcinoma (HCC), seriously affecting the quality of life of patients, but the current clinical treatments of liver fibrosis have not been developed yet. Recent studies have shown that hypoxia is a key factor promoting the progression of liver fibrosis. Hypoxia can cause liver fibrosis. Liver fibrosis can, in turn, profoundly further deepen the degree of hypoxia. Therefore, exploring the role of hypoxia in liver fibrosis will help to further understand the process of liver fibrosis, and provide the theoretical basis for its diagnosis and treatment, which is of great significance to avoid further deterioration of liver diseases and protect the life and health of patients. This review highlights the recent advances in cellular and molecular mechanisms of hypoxia in developments of liver fibrosis.


2022 ◽  
Vol 12 (4) ◽  
pp. 834-840
Author(s):  
Peng Xu ◽  
Fang Sun ◽  
Ming Xiong ◽  
Qun Li ◽  
Peng Tu ◽  
...  

Purpose: To discuss the effects and mechanisms of improvement of Hydroxysafflor yellow A in pulmonary fibrosis by in vivo study. Material and Methods: In this study, dividing the C57BL/6 mice as 4 group, there were 10 mice in every group. Collecting the serum of difference groups and measuring the Hyp, SOD, MDA, TNF-α and IL-6 levels. Lung tissues were taken out and evaluating the pathology by HE staining and fibrosis degree by Masson staining. The relative proteins (α-SMA and E-cadherin) were measured by IHC and WB in lung tissues of difference groups. Results: With HSYA or DXM supplement, the Hyp, MDA, TNF-α and IL-6 concentrations significantly suppressed and SOD concentration significantly enhanced (P < 0.05, respectively). Compared with Sham group, the pathology injury and fibrosis degree of Model group were significantly up-regulation (P < 0.001, respectively); With HSYA or DXM treatment, the pathology injury and fibrosis degree of HSYA and DXM groups were significantly improved (P < 0.05, respectively). By IHC and WB assay, the α-SMA and E-cadherin proteins expressions of Model group were significantly differences (P < 0.001, respectively); however, the α-SMA and E-cadherin proteins expressions of HSYA and DXM groups were significantly improved with HSYA or DXM supplement (P < 0.05, respectively). Conclusion: HSYA improves pulmonary fibrosis by regulation α-SMA and E-cadherin in vivo study.


2014 ◽  
Vol 912-914 ◽  
pp. 1940-1943
Author(s):  
Yan Li ◽  
Xiao Ou Li ◽  
Feng Hao ◽  
Lei Zhang ◽  
Lei Liu ◽  
...  

To evaluate the control effect of Oviductus ranae on liver fibrosis in rats, and the change of TGF-β and α-SMA in liver of. To explore the mechanism of Oviductus ranae decoction on liver fibrosis. Methods Wistar female rats were randomly divided into a blank control group, model control group, colchicines group, Oviductus ranae group. Using the CCl4composite approach to make the rat modle. The course of treat-mart was 12 weeks.After treatment,All the rats was killed,and the materials and blood was taken,and to detect biochemical test of liver function after eight weeks. Investigating the variation of liver histology. Meanwhile detecting protein expression of TGF-β and α-SMA and by immunehistochemical method.Result The general condition of rats in all treatment groups are worse than the blank group,but better than the model group. And the rats in the model group were all occurred in liver fibrosis,and liver fibrosis is the most serious.In a normal rat liver tissue of TGF-β and α-SMA were significantly lower in model group and each treatment group, and there were significant differences, and the TGF-β and α-SMA in expression of liver tissue in model rats of TGF-β and α-SMA the highest. Conclusion: Oviductus ranae can effectively improve liver fibrosis rats induced by CC14liver function.Oviductus ranae can reduce the expression of TGF-β1in liver tissue of hepatic fibrosis rats induced by CCl4in. This may be one of the mechanisms of Oviductus ranae in prevention and treatment of liver fibrosis. Even though both increased expression of TGF-β and α-SMA expression, is able to determine TGF-β and α-SMA for the intervention of liver TGF-β signal transduction pathway in liver fibrosis.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yuan-hui Li ◽  
Shuang Shen ◽  
Tong Shao ◽  
Meng-ting Jin ◽  
Dong-dong Fan ◽  
...  

AbstractMesenchymal stem cell (MSC) therapy has become a promising treatment for liver fibrosis due to its predominant immunomodulatory performance in hepatic stellate cell inhibition and fibrosis resolution. However, the cellular and molecular mechanisms underlying these processes remain limited. In the present study, we provide insights into the functional role of bone marrow-derived MSCs (BM-MSCs) in alleviating liver fibrosis by targeting intrahepatic Ly6Chi and Ly6Clo macrophage subsets in a mouse model. Upon chronic injury, the Ly6Chi subset was significantly increased in the inflamed liver. Transplantation of BM-MSCs markedly promoted a phenotypic switch from pro-fibrotic Ly6Chi subset to restorative Ly6Clo subpopulation by secreting paracrine cytokines IL-4 and IL-10 from the BM-MSCs. The Ly6Chi/Ly6Clo subset switch significantly blocked the source of fibrogenic TGF-β, PDGF, TNF-α, and IL-1β cytokines from Ly6Chi macrophages. Unexpectedly, BM-MSCs experienced severe apoptosis and produced substantial apoptotic bodies in the fibrotic liver during the 72 h period of transplantation. Most apoptotic bodies were engulfed by Ly6Clo macrophages, and this engulfment robustly triggered MMP12 expression for fibrosis resolution through the PtdSer-MerTK-ERK signaling pathway. This paper is the first to show previously unrecognized dual regulatory functions of BM-MSCs in attenuating hepatic fibrosis by promoting Ly6Chi/Ly6Clo subset conversion and Ly6Clo macrophage restoration through secreting antifibrogenic-cytokines and activating the apoptotic pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yi Zhu ◽  
Ming Qiao ◽  
Jianhua Yang ◽  
Junping Hu

Objective. To holistically explore the latent active ingredients, targets, and related mechanisms of Hugan buzure granule (HBG) in the treatment of liver fibrosis (LF) via network pharmacology. Methods. First, we collected the ingredients of HBG by referring the TCMSP server and literature and filtered the active ingredients though the criteria of oral bioavailability ≥30% and drug-likeness index ≥0.18. Second, herb-associated targets were predicted and screened based on the BATMAN-TCM and SwissTargetPrediction platforms. Candidate targets related to LF were collected from the GeneCards and OMIM databases. Furthermore, the overlapping target genes were used to construct the protein-protein interaction network and “drug-compound-target-disease” network. Third, GO and KEGG pathway analyses were carried out to illustrate the latent mechanisms of HBG in the treatment of LF. Finally, the combining activities of hub targets with active ingredients were further verified based on software AutoDock Vina. Results. A total of 25 active ingredients and 115 overlapping target genes of HBG and LF were collected. Besides, GO enrichment analysis exhibited that the overlapping target genes were involved in DNA-binding transcription activator activity, RNA polymerase II-specific, and oxidoreductase activity. Simultaneously, the key molecular mechanisms of HBG against LF were mainly involved in PI3K-AKT, MAPK, HIF-1, and NF-κB signaling pathways. Also, molecular docking simulation demonstrated that the key targets of HBG for antiliver fibrosis were IL6, CASP3, EGFR, VEGF, and MAPK. Conclusion. This work validated and predicted the underlying mechanisms of multicomponent and multitarget about HBG in treating LF and provided a scientific foundation for further research.


Sign in / Sign up

Export Citation Format

Share Document