Jute-reinforced non-woven composites as a thermal insulator and sound absorber – A review

2016 ◽  
Vol 36 (3) ◽  
pp. 206-213 ◽  
Author(s):  
Mohamed Zakriya ◽  
G Ramakrishnan ◽  
N Gobi ◽  
NK Palaniswamy ◽  
J Srinivasan

Natural fibres are widely used in different applications and one of the important applications is sound insulation. The research trends in the improvement of thermal and sound insulation of the jute-based composite materials filled with polymer materials are studied by the researchers. Jute fibres exhibit admirable heat and sound insulation properties but this has not been completely researched as yet. A detailed information related to enrich the insulation properties of jute non-woven-reinforced polymer composites based on its design of manufacturing, density of composites, morphology, structural parameters of fibre batting, number of layers and recent strategies are discussed for its high-performance potential applications.

2021 ◽  
Vol 9 ◽  
Author(s):  
Huizhi Lu ◽  
Xunlai Li ◽  
Qingquan Lei

Since their discovery 50 years ago, conjugated conducting polymers have received increasing attention owing to their unique conductive properties and potential applications in energy storage, sensors, coatings, and electronic devices such as organic field-effect transistors, photovoltaic cells, and light-emitting devices. Recently, these materials have played a key role in providing a more comfortable environment for humans. Consequently, the development of novel, high-performance conjugated conductive materials is crucial. In this mini-review, the progress of conjugated conductive materials in various applications and the relationship between the chemical structures and their performances is reviewed. This can aid in the molecular design and development of novel high-performance conjugated polymer materials.


2020 ◽  
Vol 16 (4) ◽  
pp. 462-477 ◽  
Author(s):  
Patrizia Bocchetta ◽  
Domenico Frattini ◽  
Miriana Tagliente ◽  
Filippo Selleri

By collecting and analyzing relevant literature results, we demonstrate that the nanostructuring of polypyrrole (PPy) electrodes is a crucial strategy to achieve high performance and stability in energy devices such as fuel cells, lithium batteries and supercapacitors. In this critic and comprehensive review, we focus the attention on the electrochemical methods for deposition of PPy, nanostructures and potential applications, by analyzing the effect of different physico-chemical parameters, electro-oxidative conditions including template-based or template-free depositions and cathodic polymerization. Diverse interfaces and morphologies of polymer nanodeposits are also discussed.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 959
Author(s):  
Cataldo Simari ◽  
Mario Prejanò ◽  
Ernestino Lufrano ◽  
Emilia Sicilia ◽  
Isabella Nicotera

Sulfonated Polysulfone (sPSU) is emerging as a concrete alternative to Nafion ionomer for the development of proton exchange electrolytic membranes for low cost, environmentally friendly and high-performance PEM fuel cells. This ionomer has recently gained great consideration since it can effectively combine large availability on the market, excellent film-forming ability and remarkable thermo-mechanical resistance with interesting proton conductive properties. Despite the great potential, however, the morphological architecture of hydrated sPSU is still unknown. In this study, computational and experimental advanced tools are combined to preliminary describe the relationship between the microstructure of highly sulfonated sPSU (DS = 80%) and its physico-chemical, mechanical and electrochemical features. Computer simulations allowed for describing the architecture and to estimate the structural parameters of the sPSU membrane. Molecular dynamics revealed an interconnected lamellar-like structure for hydrated sPSU, with ionic clusters of about 14–18 Å in diameter corresponding to the hydrophilic sulfonic-acid-containing phase. Water dynamics were investigated by 1H Pulsed Field Gradient (PFG) NMR spectroscopy in a wide temperature range (20–120 °C) and the self-diffusion coefficients data were analyzed by a “two-sites” model. It allows to estimate the hydration number in excellent agreement with the theoretical simulation (e.g., about 8 mol H2O/mol SO3− @ 80 °C). The PEM performance was assessed in terms of dimensional, thermo-mechanical and electrochemical properties by swelling tests, DMA and EIS, respectively. The peculiar microstructure of sPSU provides a wider thermo-mechanical stability in comparison to Nafion, but lower dimensional and conductive features. Nonetheless, the single H2/O2 fuel cell assembled with sPSU exhibited better features than any earlier published hydrocarbon ionomers, thus opening interesting perspectives toward the design and preparation of high-performing sPSU-based PEMs.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4386
Author(s):  
Muhammad Syahmi Abd Rahman ◽  
Mohd Zainal Abidin Ab Kadir ◽  
Muhamad Safwan Abd Rahman ◽  
Miszaina Osman ◽  
Shamsul Fahmi Mohd Nor ◽  
...  

The advancement of material technology has contributed to the variation of high-performance composites with good electrical insulation and mechanical properties. Their usage in electrical applications has grown since then. In Malaysia, the composite made of Glass Fiber Reinforced Polymer (GFRP) has been adopted for crossarm manufacturing and has successfully served 275 kV lines for a few decades. However, the combination of extreme conditions such as lightning transient and tropical climate can impose threats to the material. These issues have become major topics of discussion among the utilities in the Southeast Asian (SEA) region, and also in previous research. In Malaysia, more than 50% of total interruptions were caused by lightning. Limited studies can be found on the composite crossarm, especially on the square tube GFRP filled crossarm used in Malaysia. Therefore, this paper proposes to study the behavior of the particular GFRP crossarm, by means of its insulation characteristics. Experimental and simulation approaches are used. Throughout the study, the GFRP specimen is known to have an average breakdown strength at 7.2 kV/mm. In addition, the CFO voltages of the crossarm at different lengths are presented, whereby the behavior under dry and wet conditions is comparably discussed. At the same time, the polarity effect on the CFO voltages is highlighted. The maximum E-fields at the immediate moment before breakdown are analyzed by adopting the finite element method (FEM). Non-uniform distribution of E-fields is witnessed at different parts of the crossarm structure. Simultaneously, the maximum field localized on the crossarm immediately before the breakdown is also presented.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 197
Author(s):  
Giorgia Giovannini ◽  
René M. Rossi ◽  
Luciano F. Boesel

The development of hybrid materials with unique optical properties has been a challenge for the creation of high-performance composites. The improved photophysical and photochemical properties observed when fluorophores interact with clay minerals, as well as the accessibility and easy handling of such natural materials, make these nanocomposites attractive for designing novel optical hybrid materials. Here, we present a method of promoting this interaction by conjugating dyes with chitosan. The fluorescent properties of conjugated dye–montmorillonite (MMT) hybrids were similar to those of free dye–MMT hybrids. Moreover, we analyzed the relationship between the changes in optical properties of the dye interacting with clay and its structure and defined the physical and chemical mechanisms that take place upon dye–MMT interactions leading to the optical changes. Conjugation to chitosan additionally ensures stable adsorption on clay nanoplatelets due to the strong electrostatic interaction between chitosan and clay. This work thus provides a method to facilitate the design of solid-state hybrid nanomaterials relevant for potential applications in bioimaging, sensing and optical purposes.


2011 ◽  
Vol 332-334 ◽  
pp. 1937-1940 ◽  
Author(s):  
Wei Wei Hu ◽  
Hua Wu Liu ◽  
Dang Feng Zhao ◽  
Zong Bin Yang

Basalt fiber is a novel high-performance inorganic material, recently has been well received as a reinforcement in China. However, the applications in civil engineering have been rather limited. The chemical compositions, the characteristics of basalt fibers, and the typical products of basalt, including chopped yarn of basalt fiber, basalt fiber geo-textiles and basalt fiber reinforced polymer, were introduced.The advantages of basalt fibers as a reinforcement of concrete were explored in comparison with the commonly used reinforcing fibers, which indicates that basalt fiber is the most promising reinforcement material for concrete and will significantly benefit civil construction industries in the future.


2000 ◽  
Vol 27 (5) ◽  
pp. 985-992 ◽  
Author(s):  
T I Campbell ◽  
N G Shrive ◽  
K A Soudki ◽  
A Al-Mayah ◽  
J P Keatley ◽  
...  

The development of a wedge-type anchorage system for fibre reinforced polymer (FRP) tendons, as part of an overall corrosion-free post-tensioning system, is outlined in this paper. A stainless steel anchor is described, and results from numerical models and load tests to evaluate its behaviour under loads from anchor set, as well as static and repeated tendon tension, are presented. An alternative wedge-type anchorage system made from ultra-high performance concrete is also described. It is shown that, although significant progress has been made in development of the anchorage, further work is required to make it more robust.Key words: FRP tendons, post-tensioning, anchorage, corrosion-free, mathematical models, load tests, concrete.


2012 ◽  
Vol 621 ◽  
pp. 196-199
Author(s):  
Shui Ping LI ◽  
Ya Li Yuan ◽  
Lu Gang Shi

Numerical simulation method of the internal flow field of fluid machinery has become an important technology in the study of fluid machinery design. In order to obtain a high-performance cement slurry mixer, computational fluid dynamics (CFD) techniques are used to simulate the flow field in the mixer, and the simulation results are studied. According to the analysis results, the structural parameters of the mixer are modified. The results show the mixer under the revised parameters meet the design requirements well. So CFD analysis method can shorten design period and provide valuable theoretical guidance for the design of fluid machinery.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1396
Author(s):  
Z. N. Diyana ◽  
R. Jumaidin ◽  
Mohd Zulkefli Selamat ◽  
Ihwan Ghazali ◽  
Norliza Julmohammad ◽  
...  

Thermoplastic starch composites have attracted significant attention due to the rise of environmental pollutions induced by the use of synthetic petroleum-based polymer materials. The degradation of traditional plastics requires an unusually long time, which may lead to high cost and secondary pollution. To solve these difficulties, more petroleum-based plastics should be substituted with sustainable bio-based plastics. Renewable and natural materials that are abundant in nature are potential candidates for a wide range of polymers, which can be used to replace their synthetic counterparts. This paper focuses on some aspects of biopolymers and their classes, providing a description of starch as a main component of biopolymers, composites, and potential applications of thermoplastics starch-based in packaging application. Currently, biopolymer composites blended with other components have exhibited several enhanced qualities. The same behavior is also observed when natural fibre is incorporated with biopolymers. However, it should be noted that the degree of compatibility between starch and other biopolymers extensively varies depending on the specific biopolymer. Although their efficacy is yet to reach the level of their fossil fuel counterparts, biopolymers have made a distinguishing mark, which will continue to inspire the creation of novel substances for many years to come.


Sign in / Sign up

Export Citation Format

Share Document