scholarly journals Pyrolysis and Combustion of Polyvinyl Chloride (PVC) Sheath for New and Aged Cables via Thermogravimetric Analysis-Fourier Transform Infrared (TG-FTIR) and Calorimeter

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1997 ◽  
Author(s):  
Zhi Wang ◽  
Ruichao Wei ◽  
Xuehui Wang ◽  
Junjiang He ◽  
Jian Wang

To fill the shortages in the knowledge of the pyrolysis and combustion properties of new and aged polyvinyl chloride (PVC) sheaths, several experiments were performed by thermogravimetric analysis (TG), Fourier transform infrared (FTIR), microscale combustion calorimetry (MCC), and cone calorimetry. The results show that the onset temperature of pyrolysis for an aged sheath shifts to higher temperatures. The value of the main derivative thermogravimetric analysis (DTG) peak of an aged sheath is greater than that of a new one. The mass of the final remaining residue for an aged sheath is also greater than that of a new one. The gas that is released by an aged sheath is later but faster than that of a new one. The results also show that, when compared with a new sheath, the heat release rate (HRR) is lower for an aged one. The total heat release (THR) of aged sheath is reduced by 16.9–18.5% compared to a new one. In addition, the cone calorimetry experiments illustrate that the ignition occurrence of an aged sheath is later than that of a new one under different incident heat fluxes. This work indicates that an aged sheath generally pyrolyzes and it combusts more weakly and incompletely.

2012 ◽  
Vol 441 ◽  
pp. 436-441 ◽  
Author(s):  
Ran Wang ◽  
Xiao Chun Wang

A novel Si/P flame retardant was prepared using tetraethyl orthosilicate (TEOS) and phosphoric acid (H3PO4). Cotton fabric treated with the flame retardant was characterized by cone calorimetry, thermogravimetric analysis (TGA), X-ray fluorescence spectroscopy, and Fourier transform infrared spectroscopy. The peak heat release rate (pHRR) and total heat release (THR) of the fabric treated with TEOS/H3PO4 are lower than those of the fabric treated with TEOS or H3PO4 alone. The HRR and THR of the treated fabric decrease from 145.66 kW/m2 and 1.68 MJ/m2 to 70.76 kW/m2 and 0.67 MJ/m2, respectively. Total smoke production decreases from 0.080 to 0.014 m2/m2. TGA revealed that cellulose dehydration increases at low temperatures because of the addition of phosphoric acid and the production of charcoal. The generated charcoal is dense. The P and Si contents markedly increase, and exist in the charcoal in the form of P-O-C and Si-O bonds, respectively. On the basis of these results, we conclude that the main mechanism of TEOS/H3PO4 is that of a condensed-phase flame retardant. Good flame retardant synergism occurs between TEOS and H3PO4.


2019 ◽  
Vol 38 (8) ◽  
pp. 896-902
Author(s):  
Hongzhong Xiang ◽  
Zixing Feng ◽  
Jianfei Yang ◽  
Wanhe Hu ◽  
Fang Liang ◽  
...  

To evaluate the combustion characteristics of raw or torrefied bamboo wastes and coal blends, the co-firing process determined by cone and pollutant emission was investigated by thermogravimetric analysis coupled with Fourier transform infrared spectroscopy. The results showed that torrefaction improved the fuel properties of bamboo wastes. Torrefied bamboo had a lower volatile fuel ratio, H/C and O/C ratios, pollutant emission and a higher heating value. They further affected the co-firing process of raw or torrefied bamboo and coal. All blends had a lower ignition temperature and a more stable flame than coal. Torrefied bamboo and coal blends had a lower percentage of quality loss, a higher heat release rate (HRR), total heat release (THR) and total smoke release (TSR). With an increase in the proportion of torrefied bamboo in the blends, the HRR, THR, TSR and percentage of quality loss increased. The main pollutant emissions included CO2, CO, SO2 and NO x. All blends of torrefied bamboo and coal had a lower pollutant emission. The optimum blend suggested was 20% torrefied bamboo/80% coal.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3588
Author(s):  
Jiayi Chen ◽  
Yansong Liu ◽  
Jiayue Zhang ◽  
Yuanlin Ren ◽  
Xiaohui Liu

Lyocell fabrics are widely applied in textiles, however, its high flammability increases the risk of fire. Therefore, to resolve the issue, a novel biomass-based flame retardant with phosphorus and nitrogen elements was designed and synthesized by the reaction of arginine with phosphoric acid and urea. It was then grafted onto the lyocell fabric by a dip-dry-cure technique to prepare durable flame-retardant lyocell fabric (FR-lyocell). X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated that the flame retardant was successfully introduced into the lyocell sample. Thermogravimetric (TG) and Raman analyses confirmed that the modified lyocell fabric featured excellent thermal stability and significantly increased char residue. Vertical combustion results indicated that FR-lyocell before and after washing formed a complete and dense char layer. Thermogravimetric Fourier-transform infrared (TG-FTIR) analysis suggested that incombustible substances (such as H2O and CO2) were produced and played a significant fire retarding role in the gas phase. The cone calorimeter test corroborated that the peak of heat release rate (PHRR) and total heat release (THR) declined by 89.4% and 56.4%, respectively. These results indicated that the flame retardancy of the lyocell fabric was observably ameliorated.


2020 ◽  
Vol 38 (6) ◽  
pp. 522-551
Author(s):  
Alexander B Morgan ◽  
Mary L Galaska

Wool is a natural fiber with lower heat release/flammability than some synthetic fabrics, but it has not been well studied for its heat release when other fibers such as cotton, linen, and nylon are present in the woven fabric. In this article, the heat release and vertical flame spread of six commercially available natural color fabrics is reported. This includes 100% wool, 80% wool/20% nylon, 70% wool/30% linen, 45% wool/55% cotton, and 40% wool/38% cotton/12% nylon/10% metallic thread fabric. Heat release was measured through cone calorimetry (ASTM E1354) as a function of the sample mounting method, through microscale combustion calorimetry (ASTM D7309), and flame spread was measured by ASTM D6413. The type of insulated backing used greatly affected the cone calorimeter results, and fabric types did show some effects in vertical flame spread and microscale combustion calorimeter testing.


2016 ◽  
Vol 30 (2) ◽  
pp. 255-272 ◽  
Author(s):  
Xilei Chen ◽  
Lili Huo ◽  
Jianbo Liu ◽  
Chuanmei Jiao ◽  
Shaoxiang Li ◽  
...  

Flame-retardant polyurethane elastomers (PUEs) have been prepared using trichloroethyl phosphate (TCEP) as flame retardant. The combustion performances and thermal decomposition properties of PUEs were studied using cone calorimetry test and thermogravimetric analysis, respectively. Kissinger method and Flynn–Wall–Ozawa (FWO) method were adopted to discuss the pyrolysis kinetics of PUEs. The experimental results showed that TCEP has good flame-retardant effect for PUE. With the increase of TCEP, the peak heat release rate and total heat release values decrease. A good diagram of linear regression can be obtained from both Kissinger and FWO methods. The activation energy values of flam- retardant PUE can be calculated from FWO method at different conversion rates.


RSC Advances ◽  
2016 ◽  
Vol 6 (98) ◽  
pp. 95825-95835 ◽  
Author(s):  
Hui Yuan ◽  
Qing liang You ◽  
Lin Jie Song ◽  
Gui ying Liao ◽  
Hua Xia ◽  
...  

The carbon nanotubes (CNT)/polyimide (PI) composites were prepared by blending and characterized by Fourier transform infrared spectrometer (FTIR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and N2adsorption–desorption.


2014 ◽  
Vol 881-883 ◽  
pp. 863-866
Author(s):  
Chao Peng ◽  
Shi Bin Nie ◽  
Lei Liu ◽  
Qi Lin He ◽  
Yuan Hu ◽  
...  

Nanoporous nickel phosphates (VSB-1) was synthesized by hydrothermal method. Then VSB-1 was added to the ammonium polyphosphate and pentaerythritol system in polypropylene (PP) matrix.The synergistic effect of VSB-1 with intumescent flame retardants (IFR) was studied by cone calorimetry test. The results of cone calorimetry show that heat release rate peak (pHRR) and total heat release (THR) of intumescent flame retardant PP with 2wt% VSB-1 decrease remarkably compared with that of without VSB-1. The pHRR and THR decrease respectively from 1140 to 286.0 kW/m2, and from 96.0 to 63.2 MJ/m2.


Sign in / Sign up

Export Citation Format

Share Document