Modification of traditional benzoxazine by blending with polyfunctional benzoxazines containing aromatic group and fluorene group

2020 ◽  
pp. 095400832097408
Author(s):  
Ting Wang ◽  
Zhi-yi Guo ◽  
Jun-yi Wang ◽  
Abdul Qadeer Dayo ◽  
Wen-bin Liu ◽  
...  

A series of polyfunctional benzoxazine monomers containing aromatic and fluorene group (AMFB) were used as modified agents to improve the performance of typical bifunctional bisphenol-A-aniline-based (BA-a) benzoxazine resins. The polymerization behaviors of BA-a/AMFB blends were investigated by using the differential scanning calorimetry (DSC), while the dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) were used to analyze the thermomechanical and thermal properties of BA-a/AMFB copolymers [poly(BA-a/AMFB)]. Moreover, the cross-section morphologies of poly(BA-a/AMFB) were observed by scanning electron microscope (SEM). The experimental results showed that BA-a monomer has good catalytic activity for AMFB monomers during the curing process. Compared with BA-a polymer [poly(BA-a)], due to the introduction of heat-resistant fluorene ring and the increase of the crosslinking degree of copolymers, the copolymers showed higher glass transition temperature and better thermal properties. For poly(BA-a/AMFB), the T 5, T 10, and Y c were higher than those of poly(BA-a). With the increase of the alkyl chain length of AMFB monomers, the cross-section creases gradually changed from linear to dendritic, and the number of creases increased significantly, which indicated that the toughness of the copolymers was significantly improved.

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2016
Author(s):  
Honghua Wang ◽  
Qilin Mei ◽  
Yujie Ding ◽  
Zhixiong Huang ◽  
Minxian Shi

Diallyl orthophthalate (DAOP) prepolymer was investigated as a reactive plasticizer to improve the processability of thermoplastics. The rheology of blends of DAOP prepolymer initiated by 2,3-dimethyl-2,3-diphenylbutane (DMDPB) and polyphenylene oxide (PPO) was monitored during the curing process, and their thermal properties and morphology in separated phases were also studied. Differential scanning calorimetry (DSC) results showed that the cure degree of the reactively plasticized DAOP prepolymer was reduced with increasing PPO due to the dilution effect. The increasing amount of the DAOP prepolymer led to a gradual decrease in the viscosity of the blends and the rheology behavior was consistent with the chemical gelation of DAOP prepolymer in blends. This indicated that the addition of the DAOP prepolymer effectively improved processability. The phase separation occurring during curing of the blend and the transition from the static to dynamic mode significantly influences the development of the morphology of the blend corresponding to limited evolution of the conversion around the gel point.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Emi Govorčin Bajsić ◽  
Vesna Rek ◽  
Ivana Ćosić

The effect of the addition of talc on the morphology and thermal properties of blends of thermoplastic polyurethane (TPU) and polypropylene (PP) was investigated. The blends of TPU and PP are incompatible because of large differences in polarities between the nonpolar crystalline PP and polar TPU and high interfacial tensions. The interaction between TPU and PP can be improved by using talc as reinforcing filler. The morphology was observed by means of scanning electron microscopy (SEM). The thermal properties of the neat polymers and unfilled and talc filled TPU/PP blends were studied by using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The addition of talc in TPU/PP blends improved miscibility in all investigated TPU/T/PP blends. The DSC results for talc filled TPU/PP blends show that the degree of crystallinity increased, which is due to the nucleating effect induced by talc particles. The reason for the increased storage modulus of blends with the incorporation of talc is due to the improved interface between polymers and filler. According to TGA results, the addition of talc enhanced thermal stability. The homogeneity of the talc filled TPU/PP blends is better than unfilled TPU/PP blends.


2020 ◽  
Vol 66 (3) ◽  
pp. 139-148
Author(s):  
Maja Vončina ◽  
Peter Cvahte ◽  
Ana Kračun ◽  
Tilen Balaško ◽  
Jožef Medved

AbstractThe alloys from Al–Mg–Si system provide an excellent combination of mechanical properties, heat treatment at extrusion temperature, good weldability, good corrosion resistance and formability. Owing to the high casting speed of rods or slabs, the solidification is rather non-equilibrium, resulting in defects in the material, such as crystalline segregations, the formation of low-melting eutectics, the unfavourable shape of intermetallic phases and the non-homogeneously distributed alloying elements in the cross-section of the rods or slabs and in the entire microstructure. The inhomogeneity of the chemical composition and the solid solution negatively affects the strength, the formability in the warm and the corrosion resistance, and can lead to the formation of undesired phases due to segregation in the material. In this experimental investigation, the cross-sections of the rods from two different alloys of the 6xxx group were investigated. From the cross-sections of the rods, samples for differential scanning calorimetry (DSC) at three different positions (edge, D/4 and middle) were taken to determine the influence of inhomogeneity on the course of DSC curve. Metallographic sample preparation was used for microstructure analysis, whereas the actual chemical composition was analysed using a scanning electron microscope (SEM) and an energy dispersion spectrometer (EDS).


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 426
Author(s):  
Beatriz Adriana Salazar-Cruz ◽  
María Yolanda Chávez-Cinco ◽  
Ana Beatriz Morales-Cepeda ◽  
Claudia Esmeralda Ramos-Galván ◽  
José Luis Rivera-Armenta

The purpose of the present work was to prepare polypropylene (PP) matrix composited filled with chemically treated pistachio shell particles (PTx), and evaluate their effect on the composites’ thermal properties. PP-PTx composites were formulated in different PTx content (from 2 to 10 phr) in a mixing chamber, using the melt-mixing process. The PTx were chemically treated using a NaOH solution and infrared spectroscopy (FTIR). According to thermogravimetric analysis (TGA), the treatment of pistachio shell particles resulted in the remotion of lignin and hemicellulose. The thermal stability was evaluated by means of TGA, where the presence of PTx in composites showed a positive effect compared with PP pristine. Thermal properties such as crystallization temperature (Tc), crystallization enthalpy (∆Hc), melting temperature (Tm) and crystallinity were determinate by means differential scanning calorimetry (DSC); these results suggest that the PTx had a nucleation effect on the PP matrix, increasing their crystallinity. Dynamic mechanical analysis (DMA) showed that stiffness of the composites increase compared with that PP pristine, as well as the storage modulus, and the best results were found at a PTx concentration of 4 phr. At higher concentrations, the positive effect decreased; however, they were better than the reference PP.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2636
Author(s):  
Tomasz M. Majka ◽  
Oskar Bartyzel ◽  
Konstantinos N. Raftopoulos ◽  
Joanna Pagacz ◽  
Krzysztof Pielichowski

Pyrolysis of the polypropylene/montmorillonite (PP/OMMT) nanocomposites allows for recovery of the filler that can be then re–used to produce PP/pyrolyzed MMT (PMMT) nanostructured composites. In this work, we discuss the thermal properties of PP/PMMT composites investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It has been found that effect of PMMT (5 wt. % and 10 wt. %) on matrix thermal stability occurs at temperatures above 300 °C. Addition of 5 wt. % and 10 wt. % of PMMT into polypropylene system gave good stabilization effect, as confirmed by the overall stabilization effect (OSE) values, which increased by 4% and 7%, respectively, compared to the control sample (PP). Interestingly, the presence of 1 wt. % and 3 wt. % of pyrolyzed clay stabilizes the system better than the same concentrations of organoclay added into polypropylene melt. DSC data revealed that pyrolyzed clay has still the same tendency as organoclay to enhance formation of the α and β crystalline PP phases only. The pyrolyzed MMT causes an improvement of the modulus in the glassy as well as rubbery regions, as confirmed by DMA results.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350039
Author(s):  
L. G. FURLAN ◽  
RICARDO V. B. OLIVEIRA ◽  
ANDRÉIA C. E. MELLO ◽  
SUSANA A. LIBERMAN ◽  
MAURO A. S. OVIEDO ◽  
...  

The preparation of high-impact polypropylene nanocomposites with different organo-montmorillonite (O-MMT) contents by means of meltprocessing was investigated. The nanocomposite properties were evaluated by transmission electron microscopy (TEM), flexural modulus, izod impact strength, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was noticed that the PP/O-MMT nanocomposites properties were affected by clay content. Exceptional improvements in impact strength were obtained (maximum of 185%) by the use of low O-MMT content. The results showed that higher enhancement on mechanical/thermal properties was obtained by 3 wt.% of O-MMT instead of higher quantities.


2019 ◽  
Vol 72 (2) ◽  
pp. 55 ◽  
Author(s):  
Hideki Hanabusa ◽  
Yuko Takeoka ◽  
Masahiro Rikukawa ◽  
Masahiro Yoshizawa-Fujita

A protic ionic liquid (PIL) composed of 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU) and acetic acid can dissolve cellulose under mild conditions and catalyse its transesterification. To investigate the relationship between physicochemical properties and chemical structures, PILs composed of DBU and carboxylic acids with varying alkyl chain lengths were prepared as cellulose-dissolving solvents. The thermal behaviours of the PILs were analysed by thermogravimetry and differential scanning calorimetry, and their viscosities, ionic conductivities, and cellulose-dissolution abilities were determined. The effect of the alkyl chain length in the carboxylate ion on the physicochemical properties of the PILs was investigated. With increasing chain length, the thermal stability and ionic conductivity increased, whereas the melting point (Tm), glass-transition temperature (Tg), cellulose solubility, and viscosity decreased. The cellulose solubility increased as the difference between the pKa values of the DBU and carboxylic acid (ΔpKa) increased. In addition, the cellulose solubility increased with the increasing density of the PIL. It was revealed that PILs with a high ΔpKa value and a carboxylate ion with a short alkyl chain are suitable for cellulose dissolution.


2016 ◽  
Vol 29 (10) ◽  
pp. 1139-1147 ◽  
Author(s):  
Zi Sang ◽  
Tiantian Feng ◽  
Wenbin Liu ◽  
Jun Wang ◽  
Mehdi Derradji

A new series of aniline and aniline-mixed tetrafunctional fluorene-based oxazine monomers were synthesized using 2,7-hydroxy-9,9-bis-(4-hydroxyphenyl) fluorene, paraformaldehyde, and primary amines (including aniline or aniline mixed with n-butylamine or n-octylamine composition). Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy were used to characterize the structure of the monomers. The copolymers were obtained by adding the monomers into a typical monofunctional polybenzoxazine (phenol-aniline-based benzoxazine). Differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis were performed to study the thermal properties of the copolymers. The copolymers exhibited high glass transition temperature values (164–201°C). A good thermal stability was also obtained with a 5% weight loss temperature over 355°C and high char yields at 800°C (42–50%).


2021 ◽  
Vol 9 ◽  
Author(s):  
Linda Salminen ◽  
Erno Karjalainen ◽  
Vladimir Aseyev ◽  
Heikki Tenhu

This article introduces butyl acrylate-based materials that are toughened with dynamic crosslinkers. These dynamic crosslinkers are salts where both the anion and cation polymerize. The ion pairs between the polymerized anions and cations form dynamic crosslinks that break and reform under deformation. Chemical crosslinker was used to bring shape stability. The extent of dynamic and chemical crosslinking was related to the mechanical and thermal properties of the materials. Furthermore, the dependence of the material properties on different dynamic crosslinkers—tributyl-(4-vinylbenzyl)ammonium sulfopropyl acrylate (C4ASA) and trihexyl-(4-vinylbenzyl)ammonium sulfopropyl acrylate (C6ASA)—was studied. The materials’ mechanical and thermal properties were characterized by means of tensile tests, dynamic mechanical analysis, differential scanning calorimetry, and thermogravimetric analysis. The dynamic crosslinks strengthened the materials considerably. Chemical crosslinks decreased the elasticity of the materials but did not significantly affect their strength. Comparison of the two ionic crosslinkers revealed that changing the crosslinker from C4ASA to C6ASA results in more elastic, but slightly weaker materials. In conclusion, dynamic crosslinks provide substantial enhancement of mechanical properties of the materials. This is a unique approach that is utilizable for a wide variety of polymer materials.


2014 ◽  
Vol 699 ◽  
pp. 233-238 ◽  
Author(s):  
Kok Leei Foo ◽  
Sie Tiong Ha

A series of new rod-shaped liquid crystal, 6-methoxy-2-(4-alkyloxybenzylidenamino) benzothiazoles possessingeven numbers of carbon atoms at the alkyloxy chain (CnH2n+1O-, n = 10, 12, 14, 16, 18) are prepared and characterized. The phase behaviour of these new compounds was studied by differential scanning calorimetry and polarising optical microscopy. All members exhibited mesophase. Influence of alkyl chain length on the mesomorphic properties was studied. Enantiotropic nematic phase was identified in all the members except for n = 18. Lower member (n = 10) exhibited monotropic (metastable) smectic A phase. The enantiotropic smectic A phase was observed fromn-dodecyloxy derivatives onward to the last homologous synthesized.


Sign in / Sign up

Export Citation Format

Share Document