Effect of TiC nanoparticles on microstructural and tribological properties of Cu-TiC nano-composites

Author(s):  
Nalin Somani ◽  
Nitin Kumar Gupta

The present study has investigated the role of the addition of TiC nanoparticles on the microstructural, mechanical, physical, and metallurgical properties of the Cu-TiC nanocomposites. A Powder metallurgy route was used to fabricate the samples. Cold compaction of powders was done at 480 MPa which was followed by sintering at 950°C. Wt.% of TiC was varied from 0% to 20%. A Pin-On-Disc tribometer was used to carry out the wear and friction tests. SEM and EDS techniques were used to explicate the morphology and microstructures of worn surfaces and to comprehend the underlying wear mechanism. The fabricated samples were investigated against the applied normal load (10, 20, and 30 N), sliding speed (0.5, 1.0, and 1.5 m/s), and sliding distance (900, 1800, and 2700 m). The results revealed that the Hardness and tensile strength were improved by 88.76% and 37.26% respectively due to the addition of TiC and were maximum for Cu-20%TiC while the relative density shows the reverse trend. Further, it was found that wear resistance and coefficient of friction were improved by 87.18% and 51.85% respectively as a function of nano-TiC content. The presence of oxide layers and mechanically mixed layers are detected from worn surface analysis which modulates the tribological behavior of the contact.

2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Ch. Sri Chaitanya ◽  
R. Narasimha Rao

Abstract The tribological behavior of the 10%, 20%, 30%, and 40% cenosphere-filled epoxy syntactic foams in terms of the wear rate and the friction coefficient of the foams were reported using a pin on disc tribometer in the present study. The influence of the wear parameters like applied pressure, sliding speed, and the sliding distance on the tribological performance of syntactic foams was reported. Syntactic foams with 40% cenosphere volume fraction exhibit better tribological properties over the other syntactic foams. The worn surface examination shows the adhesive dominant wear mechanism and the wear debris with broken cenosphere particles.


From the Research, it found that there is an impact of Silicon Nitride (Si3N4 ) on the mechanical properties of Nylon 6 or polyamide 6 based composites. Nylon 6 prepared with Silicon Nitride (Si3N4 ) by changing the weight proportions. The hardness and wear properties of Nylon-6/Si3N4 composites have investigated. Experiments were carried out as per Taguchi's design. Rockwell, hardness testing device, used to observe the hardness number of different nylon-6/ Si3N4 composites and the pin-on-disc wear test (ASTM G99) conducted with different combinations of reinforcement, sliding distance, sliding speed and normal load. Scanning electron microscopy (SEM) was used to look at the break surfaces microstructure of wear and tensile tests. The increase of Si3N4 upgrades the existence state of typical Nylon 6 to a more important point.


Author(s):  
F. Honda ◽  
M. Goto

Tribological performance of sub-nano to nanometer-thick Ag layers deposited on Si(111) have been examined to understand the role of surface thin layers to the wear and friction characteristics. The slider was made of diamond sphere of 3 mm in radius. Sliding tests were carried out in an ultra-high vacuum environment (lower than 4 × 10−8 Pa) and analyzed in-situ by Auger electron spectroscopy (AES) for the quantitative thickness-measurements, by reflection high-energy electron diffraction (RHEED) to clarify the substrate cleanliness and crystallography of the Ag films, and by scanning probe microscopy (SPM) for the morphology of the deposited/slid film surfaces. As the results, a minimum of the friction coefficient 0.007 was observed from the film thickness range of 1.5–10 nm, and exactly no worn particles were found after 100 cycles of reciprocal sliding. Results have directly indicated that solid Ag(111) sliding planes allowed to reduce the friction coefficient very low without any detectable wear particles, and Ag nanocrystallites in Ag polycrystalline layers increase the size to 20–40 nm order, during sliding. The friction coefficient was slightly dependent to the normal load. Results were discussed on the role of the surface atoms to the friction, and a mechanism of sliding on Ag thin layers.


2020 ◽  
pp. 089270572094190
Author(s):  
Omar Hussain ◽  
Babar Ahmad ◽  
Shahid Saleem

The present work focuses on evaluating the tribological behavior of ultrahigh molecular weight polyethylene (UHMWPE) with 316L stainless steel and Ti6Al4V under dry and lubricated sliding conditions using human body fluids (synovial fluid and human serum). Eighteen trials of experiments were performed using a reciprocating sliding tribometer (pin-on-disc) at 37°C based on Taguchi’s L18 (21 × 32) array. The in-vitro experimental results revealed that UHMWPE offers better tribological performance under synovial fluid lubrication conditions irrespective of the counterface material. The optimization of the response variables (coefficient-of-friction (COF) and specific wear rate (WR)) was performed using optimization techniques (Taguchi and Grey relational analysis). It was revealed that Ti6Al4V counterface material under synovial fluid lubrication and normal load of 52 N exhibits the optimal tribological performance with UHWMPE. The contribution of process parameters on the COF and WR was evaluated using analysis of variance. It was established that load is the most significant parameter, affecting COF and WR.


Author(s):  
Mohammad Pourmostafaei ◽  
Mohammad Pourgol-Mohammad ◽  
Mojtaba Yazdani ◽  
Hossein Salimi

In this paper, a new model is proposed for system degradation evaluation under sliding wear failure mechanism. This model estimates the material loss by progression of sliding distance. This model is generated by considering physical and geometrical aspects of system under wear mechanism. Several sets of experimental data are used for validation of the presented model. These experimental data are related to pin-on-disc test of Tungsten Carbide pins. These sets of data include initially conformal and non-conformal contacts. One set of data of pin-on-disc test by ASTM-G99 standard is used for additional validation of the model and for investigation of normal load effects on the parameters of presented model. Finally, uncertainty analysis is done by Monte-Carlo simulation to determine the variations of the predicted wear caused material loss.


2011 ◽  
Vol 465 ◽  
pp. 495-498 ◽  
Author(s):  
Pavol Hvizdoš ◽  
Annamária Duszová ◽  
Viktor Puchý ◽  
Orsolya Tapasztó ◽  
Peter Kun ◽  
...  

Tribological behavior of ZrO2 and Si3N4 based nanocomposites with addition of carbon nanofibres and nanotubes has been studied by the pin-on-disc technique. Friction coefficients were measured and recorded, wear rates were calculated in terms of material volume loss per load and sliding distance. The wear damage was studied using optical and electron microscopy and its mechanisms were identified. In monolithic materials the dominant wear mechanism was abrasion, in composites with CNF and with higher volume fraction of CNTs (5 and 10%) fiber pull-out and lubricating by the carbon phases occurred.


2021 ◽  
Vol 49 (2) ◽  
pp. 414-421
Author(s):  
Manjunath Naik ◽  
L.H. Manjunath ◽  
Vishwanath Koti ◽  
Avinash Lakshmikanthan ◽  
Praveennath Koppad ◽  
...  

Graphene and carbon nanotubes are two carbon based materials known for their unique wear and friction properties. It would be quite interesting to understand the wear behavior of aluminium hybrid composites when these two nanosize reinforcements are incorporated into it. The hybrid composites with varying weight fractions of graphene (1, 2, 3 and 5 wt.%) and fixed CNT content of 2 wt.% were produced using powder metallurgy technique. The effect of varying graphene content on hardness and sliding wear of hybrid composites was studied. The wear tests were done as per ASTM G-99 standard with fixed sliding velocity (2 m/s) and sliding distance (1200 m) but varying applied load (10 - 30 N). Worn surface analysis was conducted using scanning electron microscope to arrive at wear mechanisms responsible for wear of aluminium and its hybrid composites. Increase in graphene content led to increase in bulk hardness with highest value of 61 RHN for hybrid composite with 3 wt.% graphene content. The wear rate of hybrid composites was found to be decreasing with enhancement in graphene content. Lower wear rate in hybrid composites was due to the formation of lubricating layer on the worn surface.


2007 ◽  
Vol 336-338 ◽  
pp. 1740-1742
Author(s):  
Fang Wu ◽  
Sheng Ming Xu ◽  
Song Zhe Chen ◽  
Lin Yan Li ◽  
Gang Xu ◽  
...  

Tribological behavior of B4C-SiC self-mated pairs was studied, and pre-oxidation treatment was adopted to improve the tribological properties of B4C-SiC. At the same SiC content, self-friction coefficient of B4C-SiC decreases with the increase of sliding distance, normal load, and sliding velocity; while the increasing of SiC content leads to increase of both self-friction coefficient and ware rate, which was determined to be within the range of 0.8×10-6~5.8×10-6 mm3·N-1·m-1. Pre-oxidation treatment of the B4C-SiC resulted in the formation of B2O3/H3BO3 lubricant layers, which effectively reduced the self-friction coefficient.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sudheer ◽  
Ravikantha Prabhu ◽  
K. Raju ◽  
Thirumaleshwara Bhat

This study evaluates the influence of independent parameters such as sliding velocity (A), normal load (B), filler content (C), and sliding distance (D) on wear performance of potassium-titanate-whiskers (PTW) reinforced epoxy composites using a statistical approach. The PTW were reinforced in epoxy resin to prepare whisker reinforced composites of different compositions using vacuum-assisted casting technique. Dry sliding wear tests were conducted using a standard pin on disc test setup following a well planned experimental schedule based on Taguchi’s orthogonal arrays. With the signal-to-noise (S/N) ratio and analysis of variance (ANOVA) optimal combination of parameters to minimize the wear rate was determined. It was found that inclusion of PTW has greatly improved the wear resistance property of the composites. Normal load was found to be the most significant factor affecting the wear rate followed by (C), (D), and (A). Interaction effects of various control parameters were less significant on wear rate of composites.


2007 ◽  
Vol 561-565 ◽  
pp. 659-662 ◽  
Author(s):  
Hisashi Sato ◽  
Yoshimi Watanabe

Effects of solid particles on wear behavior of dispersion-hardened alloy were investigated using Cu-SiO2 alloys containing 0.6vol.%SiO2, 1.2vol.%SiO2 and 1.7vol.%SiO2 particles. Wear tests were made using pin-on-disc type wear machine. Wear property of the Cu-SiO2 alloys is improved by increasing volume fraction of SiO2 particles. Moreover, wear amounts of Cu-SiO2 alloys increase with increasing the sliding distance, and then are saturated at exceeding about 1km. This is why that SiO2 particle improves the strength of Cu-SiO2 alloy, and that the work hardening occurs on worn surface. Wear-induced layer is formed just below worn surface by severe plastic deformation due to wear, and its hardness increases as the volume fraction of SiO2 particles increases. From these obtained results, wear process of Cu-SiO2 alloy was discussed.


Sign in / Sign up

Export Citation Format

Share Document