A numerical study on the unsteady effect of axial spacing on the performance in a contra-rotating axial compressor

Author(s):  
Xiaochen Mao ◽  
Bo Liu

Unsteady numerical simulations are conducted to investigate the unsteady effects of axial spacing on the performance of a contra-rotating axial compressor. The results show that the stage efficiency is dominant by unsteady effects between two rotors at lower axial gap ranges. As the axial spacing is increased, the variation of aerodynamic force is different for the two rotors. As a whole, the oscillation on the pressure surface is much stronger than that on the suction side in rotor1. For rotor2, however, the local maximum amplitude is just located at the blade leading edge, especially near the tip region. Additionally, the maximum amplitude of the pressure fluctuations generally decreases with an increase of axial spacing. The dominating frequency is different for monitors located at different positions and varies with the increasing of axial gaps. As the axial gap is increased, the potential effects decay in the process of propagating. Meanwhile, the incoming wakes are mixed out more sufficiently which would reduce the fluctuations at leading edge of rotor2. Therefore, a proper axial spacing should be chosen in the design process of a contra-rotating axial compressor considering both the performance and structure.

Author(s):  
Adel Ghenaiet

Automotive radial turbines usually operate in extreme polluted environments, where the impingements of particles on blades cause erosion damage. This paper presents a numerical study of particle dynamics and erosion through the components of a radial inflow turbine based on a Lagrangian tracking in-house code. The particle trajectories, impacts and induced erosion were determined throughout the volute, vaneless nozzle and impeller. The number of particles, sizes and initial positions were known according to a specified concentration of sand particles AC-coarse (0–200 micron). The results of numerical simulations show that obtained trajectories are consistently different from those in axial flow turbines, owing to the nature of flow and direction of inward forces. Small size particles travel easily through the rotor passage, whereas large ones only cross a small part of the rotor then are centrifuged back to the volute till reducing in size by fragmentation. The maximum erosion wear is found on the rotor blade leading edge due to direct exposure to flux of particles at high velocities and incidences. Highly eroded area is observed on the blade suction side from the leading edge, due to particles consistently impacting this area. Several particles crossing through the rotor passage are found to impact the pressure surface only towards exducer. Small particles from pressure side crossing over the tip induce local erosion. The initial positions of blades are shown to have great effects on the rotor erosion patterns.


2011 ◽  
Vol 383-390 ◽  
pp. 3963-3968
Author(s):  
Shao Hua Li ◽  
Li Mei Du ◽  
Wen Hua Dong ◽  
Ling Zhang

In this paper, a numerical simulation was performed to investigate heat transferring characteristics on the leading edge of a blade with three rows of holes of film-cooling using Realizable k- model. Three rows of holes were located on the suction side leading edge stagnation line and the pressure surface. The difference of the cooling efficiency and the heat transfer of the three rows of holes on the suction side and pressure side were analyzed; the heat transfer and film cooling effectiveness distribution in the region of leading edge are expounded under different momentum rations.The results show that under the same condition, the cooling effectiveness on the pressure side is more obvious than the suction side, but the heat transfer is better on the suction side than the pressure side. The stronger momentum rations are more effective cooling than the heat transfer system.


Author(s):  
Amr Abdelrahman ◽  
Amr Emam ◽  
Ihab Adam ◽  
Hamdy Hassan ◽  
Shinichi Ookawara ◽  
...  

Abstract Through the last two decades, many studies have demonstrated the ability of leading-edge protrusions (tubercles), inspired from the pectoral flippers of the humpback whale, to be an effective passive flow control method for the stall phase of an airfoil in some cases depending on the geometrical features and the flow regime. Nevertheless, there is a little work associated with revealing tubercles performance for the lifting surfaces with a highly cambered cross-section, used in numerous applications. The present work aims to investigate the effect of implementing leading edge tubercles on the performance of an infinite span rectangular wing with the highly cambered S1223 foil at different flow regimes. Two sets; baseline one and a modified with tubercles have been studied at Re = 0.1 × 106, 0.3 × 106 and 1.5 × 106 using computational fluid dynamics with a validated model. The numerical results demonstrated that Tubercles have the ability to entirely alter the flow structure over the airfoil, confining the separation to troughs, hence, softening the stall characteristics. However, the tubercle modification expedites the presence of the stalled flow over the suction side, lowering the stall angle for the three mentioned Reynolds numbers. While, no considerable difference occurs in lift and drag before the stall.


2019 ◽  
Vol 11 (5) ◽  
pp. 1423 ◽  
Author(s):  
Md Rakibuzzaman ◽  
Hyoung-Ho Kim ◽  
Kyungwuk Kim ◽  
Sang-Ho Suh ◽  
Kyung Kim

Effective hydraulic turbine design prevents sediment and cavitation erosion from impacting the performance and reliability of the machine. Using computational fluid dynamics (CFD) techniques, this study investigated the performance characteristics of sediment and cavitation erosion on a hydraulic Francis turbine by ANSYS-CFX software. For the erosion rate calculation, the particle trajectory Tabakoff–Grant erosion model was used. To predict the cavitation characteristics, the study’s source term for interphase mass transfer was the Rayleigh–Plesset cavitation model. The experimental data acquired by this study were used to validate the existing evaluations of the Francis turbine. Hydraulic results revealed that the maximum difference was only 0.958% compared with the CFD data, and 0.547% compared with the experiment (Korea Institute of Machinery and Materials (KIMM)). The turbine blade region was affected by the erosion rate at the trailing edge because of their high velocity. Furthermore, in the cavitation–erosion simulation, it was observed that abrasion propagation began from the pressure side of the leading edge and continued along to the trailing edge of the runner. Additionally, as sediment flow rates grew within the area of the attached cavitation, they increased from the trailing edge at the suction side, and efficiency was reduced. Cavitation–sand erosion results then revealed a higher erosion rate than of those of the sand erosion condition.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
M. Awasthi ◽  
J. Rowlands ◽  
D. J. Moreau ◽  
C. J. Doolan

Abstract Measurements of the wall pressure fluctuations near a wing-plate junction were made for wings with three different aspect ratios (AR) of 0.2, 0.5, and 1.0 at several angles of attack. The chord-based Reynolds number for each wing was 274,000. The results show that the wall pressure fluctuations are a function of wing AR for cases where AR≤ 1.0. For each wing, the pressure fluctuations are highest upstream of the wing leading-edge due to three-dimensional flow separation; wings with AR = 1.0 and 0.5 show comparable levels, while those with AR = 0.2 show lower fluctuation levels over a wide frequency range. Downstream of the leading-edge, the pressure fluctuations decay rapidly on both sides of the wing until the maximum thickness location after which little variation is observed. The pressure fluctuations downstream of the leading-edge on the suction-side were observed to be comparable for AR = 0.2 and 0.5, while those for AR = 1.0 were higher in magnitude. On the pressure-side, the pressure fluctuations near the leading-edge are a weak function of AR; however, those further downstream remain independent of AR. The pressure fluctuations aft of the wing on the suction-side are more coherent for lower ARs and show higher convection velocity, possibly due to an interaction between the tip and the junction flows for lower ARs.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Mario Eck ◽  
Roland Rückert ◽  
Dieter Peitsch ◽  
Marc Lehmann

Abstract The aim of the present paper is to improve the physical understanding of discrete prestall flow disturbances developing in the tip area of the compressor rotor. For this purpose, a complementary instrumentation was used in a single-stage axial compressor. A set of pressure transducers evenly distributed along the circumference surface mounted in the casing near the rotor tip leading edges measures the time-resolved wall pressures simultaneously to an array of transducers recording the chordwise static pressures. The latter allows for plotting quasi-instantaneous casing pressure contours. Any occurring flow disturbances can be properly classified using validated frequency analysis methods applied to the data from the circumferential sensors. While leaving the flow coefficient constant, a continuously changing number of prestall flow disturbances appears to be causing a unique spectral signature, which is known from investigations on rotating instability. Any arising number of disturbances is matching a specific mode order found within this signature. While the flow coefficient is reduced, the propagation speed of prestall disturbances increases linearly, and meanwhile, the speed seems to be independent from the clearance size. Casing contour plots phase-locked to the rotor additionally provide a strong hint on prestall disturbances clearly not to be caused by a leading edge separation. Data taken beyond the stalling limit demonstrate a complex superposition of stall cells and flow disturbances, which the title “prestall disturbance” therefore does not fit to precisely any more. Different convection speeds allow the phenomena to be clearly distinguished from each other. Furthermore, statistical analysis of the pressure fluctuations caused by the prestall disturbances offer the potential to use them as a stall precursor or to quantify the deterioration of the clearance height between the rotor blade tips and the casing wall during the lifetime of an engine.


Author(s):  
Rayapati Subbarao ◽  
M. Govardhan

Abstract Flow through the Counter Rotating Turbine (CRT) stage is more complex due to the presence of two rotors that rotate in the opposite direction, the spacing between them and the tip clearance provided on rotors. This flow aspect may change, if we change the parameters like speed, spacing and blade angles. Current effort contains simulation studies on the flow topology of CRT through dissimilar speed ratios in the range of 0.85–1.17. CRT components stator and the rotors are modelled. At nozzle inlet, stagnation pressure boundary condition is used. At the turbine stage or rotor 2 outlet, mass flow rate is specified. Skin friction lines are drawn on rotor 1 as well as rotor 2 on all over the blade. Not much variation of skin friction lines is witnessed in rotor 1 on the pressure side with exception to the position of the separation line close to leading edge. On suction side, skin friction lines are more uniform when the speed ratio is greater than 1. Skin friction lines on rotor 2 pressure surface show the presence of re-attachment lines. The position of the nodal point of separation near the hub remained same, but the strength is decreasing with speed ratio. On rotor 2 suction side, near the tip, all along the stream wise direction, line of re-attachment is observed that spreads from leading edge to trailing edge, whose strength is varying with speed ratio. Near the hub as well, line of re-attachment is observed, which is of more intensity in lower speed ratios. For the same region in rotor 1, there is proper reattachment as nodes are observed instead of lines, suggesting that more improved flow is occurring in rotor 1 than rotor 2. Thus, the present paper identifies the flow modification with speed ratio in a counter rotating turbine. Also, effort is made to see the consequence of flow change on the output of CRT.


Author(s):  
Hongwei Ma ◽  
Jun Zhang

The purpose of this paper is to investigate numerically the effects of the tip geometry on the performance of an axial compressor rotor. There are three case studies which are compared with the base line tip geometry. 1) baseline (flat tip); 2) Cavity (tip with a cavity); 3) SSQA (suction side squealer tip) and 4) SSQB (modified suction side squealer tip). The case of SSQB is a combination of suction side squealer tip and the cavity tip. From leading edge to 10% chord, the tip has a cavity. From 10% chord to trailing edge, the tip has a suction side squealer. The numerical results of 2) show that the cavity tip leads to lower leakage mass flow and greater loss in tip gap and the rotor passage. The loading near the blade tip is lower than the baseline, thus the tangential force of the blade is lower. It leads to lower pressure rise than the baseline. The performance of the compressor for the tip with cavity is worse than the baseline. The results of 3) show that the higher curvature of the suction side squealer increases the loading of the blade and the tangential blade force. With the suction side squealer tip, the leakage flow experiences two vena contractor thus the mass of the leakage flow is reduced which is benefit for the performance of the compressor. The loss in the tip gap is lower than baseline. The performance is better than the baseline with greater pressure rise of the rotor, smaller leakage mass flow and lower averaged loss. For the case the SSQB, the leakage mass flow is lower than the SSQA and the loss in the tip gap and the rotor passage is greater than SSQA. The performance of the case of the SSQB is worse than the case of SSQA.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Huang Chen ◽  
Yuanchao Li ◽  
David Tan ◽  
Joseph Katz

Experiments preformed in the JHU refractive index matched facility examine flow phenomena developing in the rotor passage of an axial compressor at the onset of stall. High-speed imaging of cavitation performed at low pressures qualitatively visualizes vortical structures. Stereoscopic particle image velocimetry (SPIV) measurements provide detailed snapshots and ensemble statistics of the flow in a series of meridional planes. At prestall condition, the tip leakage vortex (TLV) breaks up into widely distributed intermittent vortical structures shortly after rollup. The most prominent instability involves periodic formation of large-scale backflow vortices (BFVs) that extend diagonally upstream, from the suction side (SS) of one blade at midchord to the pressure side (PS) near the leading edge of the next blade. The 3D vorticity distributions obtained from data recorded in closely spaced planes show that the BFVs originate form at the transition between the high circumferential velocity region below the TLV center and the main passage flow radially inward from it. When the BFVs penetrate to the next passage across the tip gap or by circumventing the leading edge, they trigger a similar phenomenon there, sustaining the process. Further reduction in flow rate into the stall range increases the number and size of the backflow vortices, and they regularly propagate upstream of the leading edge of the next blade, where they increase the incidence angle in the tip corner. As this process proliferates circumferentially, the BFVs rotate with the blades, indicating that there is very little through flow across the tip region.


Author(s):  
Simon Herve ◽  
Oliver Reutter ◽  
Mark Wieler ◽  
Eberhard Nicke

Endwall losses and secondary air flow are considered to be responsible for a significant part of the flow losses in compressors. Their reduction can be achieved by 3D blade design and non-axisymmetric endwalls. In order to evaluate the potential of both effects, an analysis of secondary air flow and the origin of losses is realized. This paper presents multiple numerical simulations to determine the predominant phenomena at the origin of losses in the hub region of the last rotor of the Rig 250, a 4-stage compressor with cantilevered stators and rotor tip clearances. In a first study (I), an inviscid endwall condition at the hub of rotor 4 has been investigated. This condition strongly reduces the secondary air flow from the pressure side to the suction side and shows a significant reduction of the losses in the hub region. But the typical loss distribution over the blade height with a local maximum between 5 and 15 % of the blade height is not changed. Through this study the losses generated by the endwall boundary layer and the resulting secondary air flow are evaluated. Moreover, the potential for endwall contouring and 3D blading in the hub region is estimated, which can be used in future design studies. In the second study (II), ideal radial distributions of the velocity and of the inflow angles at the inlet of the rotor 4 are set. The results show the dependencies between the inflow condition and the loss production in the blade passage near the endwall. These studies sets the theoretical maximal potential for improvement techniques, like endwall contouring or the modification of the upstream stator.


Sign in / Sign up

Export Citation Format

Share Document