An analysis method for the performance of compliant cylindrical intershaft gas film seal considering centrifugal expansion effect

Author(s):  
Guoqiang Hou ◽  
Hua Su ◽  
Guoding Chen

A compliant cylindrical gas film seal has the potential to adapt to the complex operating conditions of a dual-rotor aeroengine, with radial runout and eccentricity, due to its special structural characteristics. To accurately investigate the seal performance of a compliant cylindrical gas film seal on dual-rotor shafts, an aeroelastic coupling method is proposed. This method analyzes the performance of a compliant cylindrical intershaft gas film seal by taking the centrifugal expansion effect into consideration. The seal performance under homodromy and counter-rotating conditions, with and without the centrifugal expansion effect, is calculated, and various performance parameters are compared and analyzed. Furthermore, the influence mechanism of the direction of rotation of the two rotors on seal performance is revealed. The results show that seal performance under homodromy condition is greater than under counter-rotating condition, and for an aeroengine under homodromy condition, it is advantageous to apply the compliant cylindrical intershaft gas film seal. The effect of centrifugal expansion (in large-diameter and high-speed rotors) and rotor eccentricity on the performance of a compliant cylindrical intershaft gas film seal, as well as the impact of inner and outer rotor speed on leakage rate, are analyzed and presented in this study. The proposed aeroelastic coupling method provides a promising guidance for the performance analysis of the compliant cylindrical gas film seal in single and dual- rotor systems.

Author(s):  
Peter Gloeckner ◽  
Klaus Dullenkopf ◽  
Michael Flouros

Operating conditions in high speed mainshaft ball bearings applied in new aircraft propulsion systems require enhanced bearing designs and materials. Rotational speeds, loads, demands on higher thrust capability, and reliability have increased continuously over the last years. A consequence of these increasing operating conditions are increased bearing temperatures. A state of the art jet engine high speed ball bearing has been modified with an oil channel in the outer diameter of the bearing. This oil channel provides direct cooling of the outer ring. Rig testing under typical flight conditions has been performed to investigate the cooling efficiency of the outer ring oil channel. In this paper the experimental results including bearing temperature distribution, power dissipation, bearing oil pumping and the impact on oil mass and parasitic power loss reduction are presented.


Author(s):  
Sidharath Sharma ◽  
Jorge García-Tíscar ◽  
John M. Allport ◽  
Martyn L. Jupp ◽  
Ambrose K. Nickson

Ported shroud casing treatment is widely used to delay the onset of surge and thereby enhancing the aerodynamic stability of a centrifugal compressor by recirculating the low momentum fluid in the blade passage. Performance losses associated with the use of recirculation casing treatment are well established in the literature and this is an area of active research. The other, less researched aspect of the casing treatment is its impact on the acoustics of the compressor. This work investigates the impact of ported shroud casing treatment on the acoustic characteristics of the compressor. The flow in two compressor configurations viz. with and without casing treatment operating at the design operating conditions of an iso-speed line are numerically modelled and validated with experimental data from gas stand measurements. The pressure fluctuations calculated as the flow solution are used to compute the spectral signatures at multiple locations to investigate the acoustic phenomenon associated with each configuration. Propagation of the frequency content through the ducts has been estimated with the aid of method of characteristics to enhance the content coming from the compressor. Expected tonal aerodynamic noise sources such as monopole (buzz-saw tones) and dipole (Blade Pass Frequency) are clearly identified in the acoustic spectra of the two configurations. The comparison of two configurations shows higher overall levels and tonal content in the case of a compressor with ported shroud operating at design conditions due to the presence of ‘mid-tones’.


Author(s):  
Robert Ladouceur ◽  
Serge Sévigny

Video lotteries seem to be one of the most profitable games for the gambling industry and are reported as the game of choice for many problem gamblers. Their popularity or, in some cases, their addictiveness, might be related to their structural characteristics: reinforcement schedule, lights, appearance, sound, and speed. We investigated the effects of video lottery game speed on concentration, motivation to play, loss of control, and number of games played. Forty-three participants were randomly assigned to either a high-speed (5 seconds) or a low-speed (15 seconds) condition. Results: gamblers in the high-speed condition played more games and underestimated the number of games played more than did participants in the low-speed condition. However, speed did not influence concentration, motivation, or loss of control over time or money. Conclusion: speed has a limited impact on occasional video lottery gamblers. The theoretical and practical implications of speed are discussed in the context of responsible gambling policies.


Author(s):  
Veronica Ferrara ◽  
Lars E. Bakken

The new wet gas compression technology provides a big potential for improved recovery from new and depleting gas/condensate fields. The current technology is based on centrifugal and axial compressor principles, which offers both the benefits of well-known concept design and the drawbacks of erosion, fouling, surge and instabilities. These concepts are based mainly on the design of a traditional compressor. This partly reflects performance requirements for handling pure gas and partly the lack of a fundamental understanding of wet gas behaviour through an impeller stage. Process and operating conditions may vary considerably during start-up at gas only or completely filled with addition of liquid with an inlet and/or discharge transient flow regime. An advanced wet gas test rig has been designed to identify the fundamental mechanisms related to wet gas compressor surge and instability behaviour. The open-loop wet gas rig includes a single overhung impeller, sections of visualisation for the wet gas impeller inlet, discharge and diffuser. The paper reviews and exposes the instabilities and surge flow behaviour at the impeller eye. Main focuses are the shift in inlet flow regime, the impact on overall compressor stage performance and the ability to handle wet transient inlet conditions. Any flow separation and/or slip across the inlet and impeller eye section will alter the established dry gas design guide lines for compressors. Visualisation of the impeller inlet during surge progression is the focal point of the present study. The investigation is supplemented by fast Fourier transform (FFT) analyses and high-speed measurements.


2022 ◽  
Vol 12 (2) ◽  
pp. 615
Author(s):  
Haobo Wang ◽  
Yulai Zhao ◽  
Zhong Luo ◽  
Qingkai Han

Squeeze film damper (SFD) is widely used in the vibration suppression of aeroengine rotor systems, but will cause complex motions of the rotor system under specific operating conditions. In this paper, a lumped-mass dynamic model of the high-pressure rotor system in an aeroengine is established, and the nonlinear stiffness and damping formula of SFD are introduced into the above model. The vibration responses of the rotor system under different rotating speeds and with different unbalances are investigated numerically, and the influence of SFD on the rotor system vibration and the change of suppression ability are compared and analyzed. The results show that in the case of high speed, together with a small unbalance, the rotor system will perform a complex vibration or a bistable vibration due to SFD. If the unbalance is properly increased under the same case of high speed, the vibration of the rotor becomes single-harmonic and the bistable vibration disappears. The research results can provide a helpful reference for analyzing complex vibration mechanisms of the rotor system with SFD and achieving an effective vibration suppression through unbalance regulation.


Author(s):  
Jie Hong ◽  
ZheFu Yang ◽  
YaoYu Ni ◽  
YanHong Ma

Abstract Uncertainties in the input parameters are inevitable in any design process. Along with the demands for higher rotational speed and higher efficiency of rotating machinery, parameter uncertainties (e.g. support stiffness, the effective bending stiffness of connecting structures) resulted from the increasing load on rotor systems lead to significant scatter of its dynamic performance. These parameters are “uncertain but bounded” which means the distributions are unknown, but the intervals are always got easier. This paper presents a method to robustly optimize the dynamic performance of flexible rotor systems taking into account parameter uncertainties via interval analysis method. Interval analysis methods for modal properties and dynamic response behavior of rotor systems are developed with the interval variables introduced into the equation of motion. The aim of the robust design method is to optimize the critical speed margins and dynamic load on bearings, in the meanwhile, minimizing the variability of the objective items by the means of reducing their sensitivity to parameter uncertainties. A numerical example is presented, results show that, for the high-speed flexible rotor systems, the optimal choices of design variables could reduce of sensitivity to rotor parameter uncertainties, thus optimizing the variability of dynamic performance, which has important practical significance in engineering.


2020 ◽  
pp. 004051752096075
Author(s):  
Xinchen Yu ◽  
Yi Li ◽  
Xuemei Ding

A high-speed video camera was used to track a tracer textile as it is tumbled among other textiles in a domestic tumble dryer under different operating conditions, with the aim of investigating the mechanisms by which the mechanical action is imposed on textiles and affects drying performance during drying. These mechanisms were first recognized by comparing the clothes drying process to other well-researched chemical engineering processes. From the observation of the recorded motion processes, cotton textile transverse motion can be divided into three categories and a motion index system was derived to characterize the type of motion undergone. The impact of textile transverse motion on drying performance was numerically discussed based on the results of an analysis of variance and regression analysis. Results indicated that textile dynamics with more complexity and flexibility tended to have more mixing, shortened distance of moisture migration inside the fabric layer and fewer wrinkles formed, resulting in higher potential to have a better drying performance.


Author(s):  
Guoqiang Hou ◽  
Hua Su ◽  
Yuhui Huang ◽  
Congcong Chen

To improve the weaknesses of large leakage and wear of dual-rotor intershaft labyrinth seal in aero-engines, the cylindrical gas film seal of metal rubber with a compliant feature is proposed to substitute this conventional seal. According to the dual-rotor operating condition, an analysis method of gas film pressure is presented considering the complex condition of rotor tilt, centrifugal expansion effect, and rotor circular precession. The characteristics of gas film pressure distribution are computed and comparisons are conducted in a complex operating state that the tilt rotor is in forward/backward circular precession under a homodromous/counter-rotating condition with/without the influence of centrifugal expansion. Besides, the formation mechanism of the gas film pressure caused by rotor rotational direction and circular precession direction is revealed. Also, the influence of rotor speed and seal ring speed on gas film pressure is analyzed when the rotor is tilted. The results indicate that for the dual-rotor cylindrical gas film seal with high rotating speed, the rotor tilt and centrifugal expansion effect have significant influence on the gas film pressure distribution, and the rotors’ rotational direction as well as rotor circular precession direction determines the maximum gas film pressure distribution area. The maximum pressure under a homodromous condition with backward precession is the highest; the maximum pressure under a homodromous condition with forward precession is the lowest. The former is 1.33% and 1.68% higher than the latter, respectively, with/without consideration of centrifugal expansion. The study method, which is generally suitable for the cylindrical gas film seal with single-rotor/dual-rotor, lays the foundation of performance analysis under complex operating conditions.


Author(s):  
Krystof Kryniski

Abstract Due to their reliability and low maintenance costs over an extended service time, the journal bearings, also known as fluid-film bearings, are commonly incorporated in the super-critical rotor systems. Together with proven balancing methods, they allow rotating machine to pass smoothly through the various of critical speeds, both during start-ups and shut-downs. However, journal bearings need to be designed very carefully, as at some operating conditions (speed and load), they may introduce the undesired effects, such as unstable operations or sub-harmonic resonances. The standard procedure leading to the optimum fluid-film bearing design is based on the bearing capacity, defined by the Sommerfield number [1][2]. When Sommerfield number is determined, all design parameters, such as viscosity, radial clearance, diameter and rotation speed, etc. are matched to satisfy the engineering requirements specified. The procedure is considered to be completely reliable and is commonly used in turbo-machinery and high-speed compressor design. However, the significant divergences between theory and practice were observed with the increase of a bearing radial clearance [3].


2021 ◽  
Vol 11 (20) ◽  
pp. 9674
Author(s):  
Longkai Wang ◽  
Yijun Yin ◽  
Ailun Wang ◽  
Xing Heng ◽  
Miao Jin

Blade off that occurs during operation will generate a sudden imbalance excitation and make the rotor become inertially asymmetric, which leads to large instantaneous impact load and induces more complex rotor dynamic phenomena. In order to study the transient dynamic characteristics for complex rotors suffering from blade off, a mathematical model for solving the response of the gas generator rotor in the aero-turboshaft engine is established based on the FE method and DOF condensation, in which the complex structural characteristics, transient impact load, and inertia asymmetry of the rotor are considered. The complex impeller structure is modeled by piecewise linear fitting with cylindrical beam elements and tapered beam elements. Without loss of generality, the modeling method suitable for complex rotors is verified through a general complex test rotor with modal experiments. Based on this, the responses are solved for carrying out parametric studies and an understanding of the transient dynamic characteristics of the rotor under the extreme working conditions of blade off. The results show that the blade off has a great impact effect on the time-domain waveform, frequency components, and rotor orbits. At the instantaneous stage after blade off, the complex motion is composed of synchronous motion and some lower-order natural modes excited by blade off. Although the transient responses with blade off at different rotational speeds have similar time-varying characteristics, the impact factor is sensitive to the rotating speed. Most important is that the parameter of the blade off location will not only have a significant effect on the impact factor, but also on the frequency spectrum. These dynamic characteristics as well as impact effect provide certain guidance for the fault recognition and dynamic analysis to these complex rotors suffering blade off.


Sign in / Sign up

Export Citation Format

Share Document