Influence of commonly used clinical antidotes on antioxidant systems in human hepatocyte culture intoxicated with α-amanitin

2010 ◽  
Vol 30 (1) ◽  
pp. 38-43 ◽  
Author(s):  
Jan Magdalan ◽  
Aleksandra Piotrowska ◽  
Agnieszka Gomułkiewicz ◽  
Tomasz Sozański ◽  
Adam Szeląg ◽  
...  

α-Amanitin (α-AMA) is the main toxin of Amanita phalloides and its subspecies (A. virosa and A. verna). The primary mechanism of α-AMA toxicity is associated with protein synthesis blocking in hepatocytes. Additionally, α-AMA exhibits prooxidant properties that may contribute to its severe hepatotoxicity. The aim of the present study was to assess the effect of α-AMA on lipid peroxidation and the activities of superoxide dismutase (SOD) and catalase (CAT) in human hepatocyte culture. The effects of benzylpenicillin (BPCN), N-acetyl-L-cysteine (ACC), and silibinin (SIL) on SOD and CAT activities and on lipid peroxidation in human hepatocyte culture intoxicated with α-AMA were also examined. In human hepatocyte culture, 48-hour exposure to α-AMA at a 2-μM concentration caused an increase in SOD activity, a reduction of CAT activity, and a significant increase in lipid peroxidation. Changes in SOD and CAT activity caused by α-AMA could probably enhance lipid peroxidation by increased generation of hydrogen peroxide combined with reduced detoxification of that oxygen radical. The addition of antidotes (ACC or SIL) to the culture medium provided more effective protection against lipid peroxidation in human hepatocytes intoxicated with α-AMA than the addition of BPCN, possessing no antioxidant properties.

2004 ◽  
Vol 20 (6-10) ◽  
pp. 141-147 ◽  
Author(s):  
Alpaslan Terzi ◽  
Mustafa Iraz ◽  
Semsettin Sahin ◽  
Atilla Ilhan ◽  
Nuri Idiz ◽  
...  

Rotenone, an insecticide of botanical origin, causes toxicity through inhibition of complex I of the respiratory chain in mitochondria. This study was undertaken to determine whether rotenone-induced liver oxidant injury is prevented by erdosteine, a mucolytic agent showing antioxidant properties. There were four groups of Male Wistar Albino rats: group one was untreated as control; the other groups were treated with erdosteine (50 mg/kg per day, orally), rotenone (2.5 mg/mL once and 1 mL/kg per day for 60 days, i.p.) or rotenone plus erdosteine, respectively. Rotenone treatment without erdosteine increased xanthine oxidase (XO) enzyme activity and also increased lipid peroxidation in liver tissue P < 0.05). The rats treated with rotenone plus erdosteine produced a significant decrease in lipid peroxidation and XO activities in comparison with rotenone group PB / 0.05). Erdosteine treatment with rotenone led to an increase in catalase (CAT) and superoxide dismutase (SOD) activities in comparison with the rotenone group PB / 0.05). There was no significant difference in nitric oxide (NO) level between groups. There were negative correlations between CAT activity and malondialdehyde (MDA) level (r= -0.934, P <0.05) with between CAT and SOD activities (r= -0.714, P <0.05), and a positive correlation between SOD activity and MDA level (r= 0.828, P <0.05) in rotenone group. In the rotenone plus erdosteine group, there was a negative correlation between XO activity and NO level in liver tissue (r= -0.833, P -0.05). In the light of these findings, erdosteine may be a protective agent for rotenone-induced liver oxidative injury in rats.


2019 ◽  
Vol 20 (12) ◽  
Author(s):  
M Miftahudin ◽  
Rini Hasibuan ◽  
Tatik Chikmawati

Abstract. Miftahudin, Hasibuan RS, Chikmawati T. 2019. Antioxidant activity of ethanolic extract of three Selaginella species from Java Island, Indonesia. Biodiversitas 20: 3715-3722. Three Selaginella species, S. ornata, S. plana, and S. willdenowii, from Java Island, Indonesia, have been known to have antioxidant properties; however, in vivo antioxidant activities of these species have not been reported. This research aimed to evaluate the in vivo antioxidant activity of ethanolic extract of three Selaginella species. The 70% ethanol extract of three Selaginella species at four different doses was administered to mice one day before being treated with oxidative stress. The liver tissue of mice treated with or without oxidative stress was analyzed their lipid peroxidation by measuring MDA concentration and Superoxide Dismutase (SOD) activities. The results showed that there were variations in antioxidant activity among the three Selaginella species. In general, the dose of 0.3 g extract kg-1 BW has been able to reduce lipid peroxidation and increase SOD activity. The administration of S. ornata extract to the mice at 1.2 g extract kg-1 BW reduced the MDA concentration to the lowest level, but the same dose of two other Selaginella extracts caused toxic effects in mice. The antioxidant activities of S. ornata and S. plana were better than that of S. willdenowii extract, and among those species, S. ornata has the best antioxidant activity.


2011 ◽  
Vol 6 (5) ◽  
pp. 554-564 ◽  
Author(s):  
Bruna Vinci ◽  
Cédric Duret ◽  
Sylvie Klieber ◽  
Sabine Gerbal-Chaloin ◽  
Antonio Sa-Cunha ◽  
...  

2003 ◽  
Vol 94 (3) ◽  
pp. 947-952 ◽  
Author(s):  
Aiguo Wu ◽  
Xiufa Sun ◽  
Fada Wan ◽  
Yugu Liu

The effects of dietary restriction (DR) on the activities of liver superoxide dismutase (SOD), catalase (Cat), and glutathione peroxidase (GPX) and the level of lipid peroxidation (LP) in developing mice were investigated in this study. Male and female Kunmin mice were fed a standard rodent diet ad libitum (AL), 80% of AL food intake (20% DR), or 65% of AL food intake (35% DR) for 12 or 24 wk. Both 12 and 24 wk of DR resulted in retarded body weight gain in male and female mice. The activities of SOD, Cat, and GPX and the content of LP in DR male and female mice were not different ( P > 0.05) from those in controls after 12 wk of DR. However, the SOD activity was increased at 24 wk in 20% DR ( P < 0.05) and 35% DR ( P < 0.01) male, but not in DR female, mice. The Cat activity was elevated at 24 wk in both DR male ( P < 0.05 for 20% DR, P < 0.01 for 35% DR) and female ( P < 0.01) mice with a greater increase in DR female ( P < 0.05) than in DR male animals. GPX activity was also increased at 24 wk in DR male ( P < 0.01) and female ( P < 0.01) mice with a greater elevation in DR females ( P < 0.05) than in DR males. Furthermore, LP was decreased at 24 wk in both DR male ( P < 0.01) and female ( P < 0.01) animals with a greater reduction in DR females ( P< 0.01) compared with DR males. These findings indicated that 24 wk, but not 12 wk, of DR led to differential effects on liver SOD, Cat, and GPX activities and LP content in male and female mice during development, suggesting sex-associated modulations of DR on antioxidant systems in developing animals.


2021 ◽  
Author(s):  
Paulami Pramanick ◽  
Anindita Chakraborty ◽  
Sarmistha Sen Raychaudhuri

Abstract Zinc causes toxicity to the plants in an excess concentration and it is manifested by chlorosis, rolling of leaf margins, and disruption of membrane integrity. The heavy metal stress also triggers the stimulation of enzymatic and non-enzymatic antioxidant systems. Polyamines are naturally occurring, secondary metabolites, protecting plants from heavy metal-induced stress. Plants also up-regulate the mRNA expression of Metallothionein in response to heavy metal-induced oxidative stress. The alteration in Metallothionein type 2 (PoMT2) expression of a medicinally important herb Plantago ovata in presence of polyamines like Putrescine, Spermidine, and Spermine in addition to ZnSO4.H2O by the semi-quantitative and the quantitative methods have been demonstrated in the present study. We have observed reductions in the expression of the Metallothionein type 2 gene in the presence of the aforementioned polyamines which implies their protective and antioxidant properties to fight against the zinc induced stress. 1 mM Put has been more efficient in increasing the total chlorophyll content (compared to 2 mM Put) by about 36% each in 1000 µM ZnSO4 treated P. ovata seedlings. Spermidine also enhanced chlorophyll content. 2 mM Put and 0.5 mM Spm have shown even better efficiencies in increasing the total antioxidant and DPPH radical scavenging activities. The lipid peroxidation has been found to decrease in Put and Spm supplemented samples by up to about 47% in both cases. Significant reductions in lipid peroxidation and down-regulation of PoMT2 gene expression indicate the roles of polyamines in partially alleviating Zn-induced oxidative damage.


2020 ◽  
Vol 10 (9) ◽  
pp. 592
Author(s):  
Elizabeth Ruiz-Sánchez ◽  
José Pedraza-Chaverri ◽  
Omar N. Medina-Campos ◽  
Perla D. Maldonado ◽  
Patricia Rojas

Depression is a psychiatric disorder, and oxidative stress is a significant mechanism of damage in this mood disorder. It is characterized by an enhancement of oxidative stress markers and low concentrations of endogenous antioxidants, or antioxidants enzymes. This suggests that antioxidants could have an antidepressant effect. S-allyl cysteine (SAC) is a compound with antioxidant action or free radical scavenger capacity. The purpose of the current research was to evaluate the antidepressant-like effect as well as the antioxidant role of SAC on a preclinical test, using the Porsolt forced swim test (FST). SAC (30, 70, 120, or 250 mg/kg, ip) was administered to male BALB/c mice daily for 17 days, followed by the FST at day 18. Oxidative stress markers (reactive oxygen species, superoxide production, lipid peroxidation, and antioxidant enzymes activities) were analyzed in the midbrain, prefrontal cortex, and hippocampus. SAC (120 mg/kg) attenuated the immobility scores (44%) in the FST, and protection was unrelated to changes in locomotor activity. This antidepressant-like effect was related to decreased oxidative stress, as indicated by lipid peroxidation and manganese-superoxide dismutase (Mn-SOD) activity in the hippocampus. SAC exerts an antidepressant-like effect that correlated, in part, with preventing oxidative damage in hippocampus.


2021 ◽  
Vol 25 (2) ◽  
pp. 154-161
Author(s):  
Alireza Ghazanfari ◽  
◽  
Maliheh Soodi ◽  
Ameneh Omidi ◽  
◽  
...  

Introduction: Neonicotinoids are a new type of insecticides that have been introduced to the poison market during the last three decades. Acetamiprid (ACT) is a neonicotinoid and widely used for controlling pests. It targets the liver as a toxic agent and damages hepatic tissues through oxidative stress mechanisms. Quercetin is a flavonoid with potent antioxidant and hepatoprotective activity and protects tissues from oxidative damages. Thus, this study is aimed to assess the protective effect of quercetin on acetamiprid-induced hepatotoxicity. Methods: Thirty-six Wistar rats were classified into six groups including control, DMSO, ACT 20, ACT 40, quercetin, and ACT40+quercetin. All treatments were administered orally with gavage for 28 days. Alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) enzyme activity was measured in serum as biomarkers of hepatotoxicity. Lipid peroxidation, superoxide dismutase (SOD) enzyme activity and total thiol content were measured in hepatic tissues. Also, hepatic tissue sections were prepared and stained with hematoxylin and eosin and evaluated under optic microscope for any tissue injuries. Results: Findings showed that ACT, especially in high dose (40mg/kg), induced hepatic tissue destruction associated with increased hepatic enzyme activity, except ALP activity, in the serum. Besides, ACT increased the lipid peroxidation and decreased total thiol content and SOD activity, which indicates ACT-induced oxidative stress in hepatic tissues. Also, hepatic tissue injuries were observed in ACT-treated group. All these changes in liver were prevented by quercetin. Conclusion: Because of strong antioxidant properties, quercetin can cope effectively with ACT-induced hepatotoxicity.


Author(s):  
O. O. Chuhay ◽  
L. A. Lubinets

Violations of redox processes play a significant role in the pathogenesis of inflammatory due to the increase of oxygen free radicals.The aim of the work was to study oxidant and antioxidant systems in the lungs of guinea pigs in different periods of the formation of experimental pneumonia.The study was carried out on 36 guinea pigs (male) weighing 180–220 grams, divided into 3 groups of 12 animals. I group – intact guinea pigs (control); II group – with the EP on the 6th day; III group – with was EP on the 10th day. EP reproduced by intranasal administration to animals Staphylococcus aureus culture according to Shlyapnyko V. N. and conduthors method. In lung tissue there was determined the content of diene conjugates (DC) V. B. Havrylova, M. I. Myshkorudna method, malondialdehyde (MDA) – there was Korobeynikov E. N. method, superoxide dismutase (SOD) – R. Fried method, catalase (CT) – R. Holmes and C. Masters method.The early period of EP: moderate growth of content DC at 34.8 % and a slight increase of content MDA at 15.3 %, increase SOD activity only at 10.57 % and the likely increase of CT at 12.69 % compared to control group. Late period of EP: further growth DC at 53.86 % and MDA at 37.4 %, SOD activity decrease at 21.37 % and CT at 16.0 % compared with the control.The results of our biochemical studies revealed disruption of lipid peroxidation and antioxidant status in lung tissue at different periods of the formation of the experimental pneumonia.


2019 ◽  
Vol 43 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Ceyda Ozfidan-Konakci ◽  
Evren Yildiztugay ◽  
Aysegul Yildiztugay ◽  
Mustafa Kucukoduk

Gallic acid (GLA; 3,4,5- trihydroxybenzoic acid) is a strong antioxidant in plants. In order to clarify the effects of GLA as a pro-oxidant or an antioxidant on cells under stress conditions, soybean (Glycine max) was grown under normal conditions or in the presence of cold stress (5 and 10?C) in the absence or presence of gallic acid (GLA; 1 and 2 mM) for 72 h. The soybean roots exposed to stress exhibited a significant decline in growth (RGR), water content (RWC), osmotic potential (??) and proline content (Pro). However, GLA treatment under stress significantly improved these parameters and alleviated the stress-generated damage. Stress decreased superoxide dismutase (SOD) activity, but GLA effectively mitigated the adverse effects on enzyme activity. After stress treatment, only catalase (CAT) was induced in soybean roots, although it was not sufficient to prevent toxic hydrogen peroxide (H2O2) accumulation. Thus, the levels of lipid peroxidation (TBARS content) markedly increased. However, GLA contributed to detoxification of H2O2 and lipid peroxidation by enhancing activities of CAT and peroxidase (POX). In addition to these enzymes, SOD activity was able to scavenge superoxide anion radicals, as evidenced by decline in TBARS content. However, monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), total ascorbate (tAsA) and glutathione (GSH) showed a decline of content in roots treated with GLA (both concentrations) plus stress. Our results suggest a protective role of GLA, which may strengthen plant tolerance by ensuring efficient water use and enhancing antioxidant systems. In soybean roots, GLA successfully alleviated the toxicity of cold stress by modulating the activities of SOD, CAT and POX rather than enzymes of the ascorbate-glutathione cycle.


Sign in / Sign up

Export Citation Format

Share Document