Overexpression of miR-146a inhibits the apoptosis of hippocampal neurons of rats with cerebral hemorrhage by regulating autophagy

2020 ◽  
Vol 39 (9) ◽  
pp. 1178-1189
Author(s):  
S Huan ◽  
J Jin ◽  
C-x Shi ◽  
T Li ◽  
Z Dai ◽  
...  

In this study, to investigate the effect of overexpression of miR-146a on autophagy of hippocampal neurons in rats with intracerebral hemorrhage (ICH), 72 Sprague-Dawley rats were randomly divided into the sham, ICH, miR-146a agomir, and miR-146a agomir control groups. The ICH model was constructed by injection of collagenase VII. The apoptosis of hippocampal neurons was measured by TUNEL assay. The levels of LC3 and Beclin 1 were analyzed by immunohistochemistry. Mitochondrial autophagy was examined by transmission electron microscopy. The levels of LC3A, LC3B, Beclin 1, Bax, Bcl-2, and cleaved caspase 3 were examined by Western blot. Western blot was also used to evaluate the expression of nuclear factor κB signaling pathway-related factors. To examine the effect of autophagy inhibitor (3-methyladenine (3-MA)) on miR-146a-regulated apoptotic protein expression, 30 rats were further divided into the sham, ICH, miR-146a agomir, 3-MA, and miR-146a + 3-MA groups. The levels of Bax, Bcl-2, and cleaved caspase 3 were examined by Western blot. Compared with the sham group, the nerve function scores, brain water content, the percentage of apoptotic cells, and the expression levels of LC3, Beclin 1, Bax, cleaved caspase 3, and p-P65 in the hippocampus of rats in the ICH group were all significantly increased ( p < 0.05), whereas the expression levels of miR-146a, Bcl-2, and p-IκBα were markedly decreased ( p < 0.05). Mitochondrial autophagy was also evident. Furthermore, compared with the ICH group, the results of the abovementioned tests in the miR-146a agomir group were reversed. The overexpression of miR-146a inhibited the autophagy of hippocampal neurons in rats with ICH.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Liang Yue ◽  
Lei Zhao ◽  
Haixiao Liu ◽  
Xia Li ◽  
Bodong Wang ◽  
...  

Glutamate- (Glu-) induced excitotoxicity plays a critical role in stroke. This study aimed to investigate the effects of APN on Glu-induced injury in HT22 neurons. HT22 neurons were treated with Glu in the absence or the presence of an APN peptide. Cell viability was assessed using the MTT assay, while cell apoptosis was evaluated using TUNEL staining. Levels of LDH, MDA, SOD, and GSH-Px were detected using the respective kits, and ROS levels were detected using dichlorofluorescein diacetate. Western blot was used to detect the expression levels of silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), cleaved caspase-3, Bax, and Bcl-2. In addition to the western blot, immunofluorescence was used to investigate the expression levels of SIRT1 and PGC-1α. Our results suggest that APN peptide increased cell viability, SOD, and GSH-Px levels and decreased LDH release, ROS and MDA levels, and cell apoptosis. APN peptide upregulated the expression of SIRT1, PGC-1α, and Bcl-2 and downregulated the expression of cleaved caspase-3 and Bax. Furthermore, the protective effects of the APN peptide were abolished by SIRT1 siRNA. Our findings suggest that APN peptide protects HT22 neurons against Glu-induced injury by inhibiting neuronal apoptosis and activating SIRT1-dependent PGC-1αsignaling.


2021 ◽  
Vol 43 (3) ◽  
pp. 1997-2010
Author(s):  
Christian Bleilevens ◽  
Christian Beckers ◽  
Alexander Theissen ◽  
Tamara Fechter ◽  
Eva Miriam Buhl ◽  
...  

Background: Anesthetic-induced preconditioning (AIP) with volatile anesthetics is a well-known experimental technique to protect tissues from ischemic injury or oxidative stress. Additionally, plasmatic extracellular vesicle (EV) populations and their cargo are known to be affected by AIP in vitro, and to provide organ protective properties via their cargo. We investigated whether AIP would affect the generation of EVs in an in vivo rat model. Methods: Twenty male Sprague Dawley rats received a repetitive treatment with either isoflurane or with sevoflurane for a duration of 4 or 8 weeks. EVs from blood plasma were characterized by nanoparticle tracking analysis, transmission electron microscopy (TEM) and Western blot. A scratch assay (H9C2 cardiomyoblast cell line) was performed to investigate the protective capabilities of the isolated EVs. Results: TEM images as well as Western blot analysis indicated that EVs were successfully isolated. The AIP changed the flotillin and CD63 expression on the EV surface, but not the EV concentration. The scratch assay did not show increased cell migration and/or proliferation after EV treatment. Conclusion: AIP in rats changed the cargo of EVs but had no effect on EV concentration or cell migration/proliferation. Future studies are needed to investigate the cargo on a miRNA level and to investigate the properties of these EVs in additional functional experiments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lin Xu ◽  
Chaonan Deng ◽  
Ying Zhang ◽  
Lina Zhao ◽  
Yan Linghu ◽  
...  

ObjectiveThis study aims to analyze the expressions of autophagy-related factors light chain 3 alpha (LC3A) and Beclin 1 and apoptosis-related factors B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X (BAX) in primary osteoblasts treated with sodium fluoride (NaF).MethodsOsteoblasts were extracted from Sprague-Dawley rats and treated with 0, 2.5, 5, and 10 mg/L NaF solutions, followed by 10 mmol/L 3-methyladenine (3-MA) for 24 h. The apoptotic rate was determined by flow cytometry, and the expressions of the autophagy- and apoptosis-related factors were measured by western blotting and real-time quantitative polymerase chain reaction.ResultsThe mRNA expressions of LC3A, Beclin 1, and BAX in the NaF-treated osteoblast group were higher than those in the control group, while the protein expressions of these factors in the NaF-treated group were significantly higher than those in the control group. However, the Bcl-2 protein expression in the NaF-treated osteoblasts was significantly decreased compared to that in the control cells. After the 3-MA treatment, the protein expressions of LC3A, Beclin 1, and Bcl-2 were significantly decreased compared with those of the NaF-treated group, whereas the expression of BAX increased. Moreover, the apoptosis rate was increased after the addition of the 3-MA inhibitor.ConclusionNaF stimulation promoted autophagy and apoptosis of the osteoblasts, suggesting the involvement of fluoride damage in these processes.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Shuangdi Li ◽  
Jingrong Dong ◽  
Guang Ta ◽  
Yinghui Liu ◽  
Junfeng Cui ◽  
...  

Objective. To investigate the effect of Xuan Bi Tong Yu Fang (XBTYF) on angiogenesis via the vascular endothelial growth factor- (VEGF-) Notch1/delta-like 4 (Dll4) pathway. Materials and Methods. Sixty Sprague-Dawley rats were randomly divided into six groups: control, sham-operated, myocardial ischemia model, and XBTYF treatment at 3.2, 1.6, and 0.8 g/kg. Electrocardiography was performed to evaluate the successful establishment of the model. Hematoxylin-eosin staining and transmission electron microscopy were carried out to observe the morphology and mitochondrial structure in myocardial cells, respectively. TUNEL staining was performed to assess the degree of cell apoptosis. The expression of VEGF-A, Notch1, Dll4, Bcl2, Bax, caspase 3, caspase 9, and cytochrome-c (Cyt-c) was observed by western blot. Results. XBTYF inhibited changes to the morphology and mitochondrial structure in cardiomyocyte and reduced cell apoptosis. Compared with the model group, XBTYF at all doses (3.2, 1.6, and 0.8 g/kg) reduced the expression of Notch1, Dll4, Bax, caspase 3, caspase 9, and Cyt-c, whereas expression of VEGF-A and Bcl2 was increased. Conclusion. XBTYF attenuated mitochondrial damage and cell apoptosis while promoting the angiogenesis of cardiomyocyte. The associated mechanism may be related to the VEGF-Notch1/Dll4 pathway.


2020 ◽  
Vol 19 (9) ◽  
pp. 1827-1834
Author(s):  
Yuqiang Su ◽  
Yan Bai ◽  
Zhonglei Zheng ◽  
Xiaoying Fan

Purpose: Neural injury affects patients after using inhalational anesthetics such as sevoflurane. Rhodioloside, a compound which is obtained from the Rhodiola rosea plant has been implicated to be the most commonly used psychostimulant that can improve a range of conditions. The study was aimed at finding the molecular mechanism underlying the Rhodioloside treatment of sevoflurane-injured hippocampal neurons.Methods: Main hippocampal neurons, secluded from Sprague Dawley embryonic rats were employed to create an injury model using 3 % sevoflurane. The sevoflurane-injured hippocampal neurons were treated with varying concentrations (10, 20, 40 and 80 μM/ml) of Rhodioloside to create different experimental groups: RHSD10+SEV, RHSD20+SEV, RHSD40+SEV, RHSD80+SEV, while untreated cells were considered as the Control group. Cell viability was identified using the CCK-8 assay. The CFSE assay was used to verify the promotion function of Rhodioloside on cell differentiation of neurons. FCM assay was employed to determine cell proliferation and apoptosis. Expression levels of apoptosisrelated factors, like Caspase-3, Bcl-2 and Bax were examined by RT-qPCR, while Western blot was used to measure phosphorylation of PKA.Results: Rhodioloside stimulated cell viability and prevented cell apoptosis in sevoflurane-injured hippocampal neurons in doses between 10-80 μM. The apoptosis-inhibitory effect of Rhodioloside was observed to be through cAMP/PKA pathway activation. Also, expression levels of Bcl-2, and PKA were enhanced and the level of Caspase-3 and Bax was reduced in a dose-dependent pattern. The PKA inhibitor reversed the above observation in the 40 μM Rhodioloside-treatment.Conclusion: Rhodioloside promoted cell viability and prevented apoptosis of primary hippocampal neurons injured by sevoflurane, through cAMP/PKA pathway activation. Inhibition of PKA network deteriorated the function of Rhodioloside by stimulating cell apoptosis. Our findings present a novel evidence that Rhodioloside could attenuate neurotoxicity of inhalational anesthetics. Keywords: Cell apoptosis, cAMP/PKA pathway, Hippocampal neurons, Rhodioloside, Sevoflurane


1997 ◽  
Vol 3 (S2) ◽  
pp. 51-52
Author(s):  
B.J. Cornell ◽  
A. Singh ◽  
I. Chu

Polyhalogenated aromatic compounds such as polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (PCDDs) continue to be environmental contaminants because of their bioaccumulation in the food chain and high resistance to biodegradation. The current study was undertaken to determine if a mixture of PCB congeners (WHO-IPCS) were interactive with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in producing morphological changes in the rat liver. Both compounds are known to produce a broad range of biochemical and morphological alterations including enzyme induction.Groups (N=5) of female Sprague-Dawley rats were administered TCDD (0, 2.5, 25, 250, 1000 ng/kg bw/day) or PCB (0, 2, 20 μg/kg bw/day) alone, or in combination with each concentration of both compounds. Incorrect concentrations were published in a previous abstract. The test substance was mixed with corn oil and given by gavage at 2 ml/kg daily for 28 days. At the end of the experiment, the rats were killed and liver samples were prepared for transmission electron microscopy.


2004 ◽  
Vol 287 (1) ◽  
pp. H203-H208 ◽  
Author(s):  
Jens Titze ◽  
Mehdi Shakibaei ◽  
Markus Schafflhuber ◽  
Gundula Schulze-Tanzil ◽  
Markus Porst ◽  
...  

Osmotically inactive skin Na+ storage is characterized by Na+ accumulation without water accumulation in the skin. Negatively charged glycosaminoglycans (GAGs) may be important in skin Na+ storage. We investigated changes in skin GAG content and key enzymes of GAG chain polymerization during osmotically inactive skin Na+ storage. Female Sprague-Dawley rats were fed a 0.1% or 8% NaCl diet for 8 wk. Skin GAG content was measured by Western blot analysis. mRNA content of key dermatan sulfate polymerization enzymes was measured by real-time PCR. The Na+ concentration in skin was determined by dry ashing. Skin Na+ concentration during osmotically inactive Na+ storage was 180–190 mmol/l. Increasing skin Na+ coincided with increasing GAG content in cartilage and skin. Dietary NaCl loading coincided with increased chondroitin synthase mRNA content in the skin, whereas xylosyl transferase, biglycan, and decorin content were unchanged. We conclude that osmotically inactive skin Na+ storage is an active process characterized by an increased GAG content in the reservoir tissue. Inhibition or disinhibition of GAG chain polymerization may regulate osmotically inactive Na+ storage.


2020 ◽  
Vol 12 (1) ◽  
pp. 1-7
Author(s):  
Inggita Kusumastuty ◽  
Frinny Sembiring ◽  
Sri Andarini ◽  
Dian Handayani

BACKGROUND: Consumption of foods and drinks high in energy, fat, and/or sugar beyond the recommended quantities can cause obesity, which triggers the incidence of brain nerve cell death related to oxidative stress, high levels of tumor necrosis factor (TNF)-α and triglycerides, and low high-density lipoprotein (HDL) levels. Progressive nerve cell death causes decreasing cognitive performance. This study aims to prove that an American Institute of Nutrition committee in 1993 (AIN-93M) diet modified with high-fat-high-fructose (HFHF) can decrease the number of hippocampal neurons. A decrease in the number of hippocampal neurons indicates progressive nerve cell death.METHODS: An experimental study using a post-test control group design was carried out using male Sprague Dawley rats. Samples were selected using simple random sampling to divide them into two groups, Group I was AIN-93M-modified HFHF diet (n=14) and Group II was AIN-93M standard (n=16). The number of visible neurons was measured in the hippocampus area of Sprague Dawley rats’ brains, stained with haemotoxylin and eosin (H&E) and scanned under 400x magnification. Neurons were counted in 10 visual fields using the "Cell_Count" application.RESULTS: The data were analysed by Pearson’s correlation test using SPSS. The results show that rats in Group I had a greater weight gain and fewer neurons than those in the Group II (p=0.023, r=-0.413).CONCLUSION: The consumption of foods high in fat and fructose can cause an increase in nerve cell death, as shown by the decrease in the number of hippocampal neurons.KEYWORDS: brain nerve cells, high fat, high fructose, increased body weight


2017 ◽  
Vol 1 (S1) ◽  
pp. 60-60
Author(s):  
Andrea Lee Frump ◽  
Margie Albrecht ◽  
Sandra Breuils-Bonnet ◽  
Bakhtiyor Yakubov ◽  
Mary Beth Brown ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Women with pulmonary arterial hypertension (PAH) exhibit superior right ventricular (RV) function and survival compared with men, a phenomenon attributed to poorly understood cardioprotective effects of 17β-estradiol (E2). We hypothesize that E2, through ERα, attenuates PH-induced RV dysfunction by upregulating the pro-contractile and pro-angiogenic peptide apelin. This ERα-mediated increase in apelin is mediated by the myocardial remodeling effector bone morphogenetic protein receptor 2 (BMPR2). METHODS/STUDY POPULATION: ERα, BMPR2, and apelin were measured (western blot) in RVs from patients with PAH-induced RV failure and in RV homogenates from male or female Sprague-Dawley rats with sugen/hypoxia (SuHx) or monocrotaline (MCT)-induced PH. H9c2 rat cardiomyoblasts and cardiac endothelial cells were stressed with TNF-α (10 ng/mL) or staurosporine (50 nM)±E2 (100 nM; 24 h). ERα-, BMPR2-, and apelin-dependence were evaluated by siRNA (5 pM). Downstream apelin target and pro-survival factor ERK1/2 expression was measured (western blot). p<0.05 by ANOVA was considered significant. RESULTS/ANTICIPATED RESULTS: ERα correlated positively with BMPR2 and apelin expression in SuHx-RVs and human RVs. Treatment of SuHx-PH rats with E2 or ERα agonist increased RV BMPR2 and apelin, whereas RV apelin was decreased in E2-treated hypoxic ERα knockout mice (p<0.05), but not in ERβ knockout mice. In H9c2 cells, E2 or ERα agonist attenuated TNF-α- or staurosporine-induced decreases in BMPR2, apelin, and phospho-ERK1/2 (p<0.05 for all endpoints). E2 protection was lost in presence of siRNA directed against ERα, BMPR2, or apelin (p<0.05). ERα was necessary for E2-mediated increases in BMPR2, apelin, and ERK1/2, and BMPR2 was required for the E2-mediated increase in apelin (p<0.05 for siRNA vs. scramble). ERα, BMPR2, and apelin protein was increased in decompensated human RVs but downstream phospho-ERK signaling was disrupted. DISCUSSION/SIGNIFICANCE OF IMPACT: E2, via ERα, increases BMPR2 and apelin in the failing RV and in stressed rat cardiomyoblasts. The E2-mediated increase in apelin is BMPR2-dependent and likely occurs through direct binding of ERα to the BMPR2 promoter. Harnessing this E2-ERα-BMPR2-apelin axis during RV compensation may lead to novel, RV-targeted therapies for PAH patients of either sex.


Pharmacology ◽  
2019 ◽  
Vol 104 (1-2) ◽  
pp. 71-80 ◽  
Author(s):  
Ying Zhang ◽  
Shaoyu Ren ◽  
Ying Ji ◽  
Yafeng Liang

Background: Our study investigated the therapeutic role and potential mechanisms of pterostilbene (PS) in diabetic nephropathy (DN) rats. Methods: DN models were established by high-fat diet after streptozotocin injection. A total of 50 Sprague-Dawley rats were randomly divided into control, DN, PS-treated groups (PS-H, PS-M, PS-L). PS was administered to rats by gavage for 8 weeks at 3 different doses (25, 10, and 5 mg/kg/day). The levels of oxidative stress activity (superoxide dismutase [SOD], malondialdehyde [MDA], glutathione peroxidase [GSH-PX]) and inflammatory factors (tumor necrosis factor [TNF]-α, interleukin (IL)-6, IL-1β, monocyte chemoattractant factor [MCP]-1) were detected by ­ELISA. TGF-β, Smad1, and fibronectin (FN) were measured through immunohistochemistry. The relative expressions of phospho-IκBα/IκBα, phospho-IκB kinases (IKK)β/IKKβ, phospho-nuclear factor-κB (NF-κB) p65/NF-κB p65 were detected by western blot. Results: Compared with DN group, the levels of TNF-α, IL-6, IL-1β, and MCP-1 were decreased in the PS-H group (p < 0.05). Meanwhile, the levels of SOD, MDA, GSH-PX improved in kidney and serum in PS-H groups (p< 0.05). PS also significantly decreased the level of phospho-NF-κB p65 and increased the levels of phospho- IKKβ and phospho-Iκ-Bα (p < 0.05). The results showed that PS treatment decreased TGF-β, Smad1, and FN expressions. Conclusion: PS had potential therapeutic effects on DN, which may be related to the regulation of NF-κB pathway.


Sign in / Sign up

Export Citation Format

Share Document