scholarly journals The Therapeutic Effects of Adipose-Derived Stem Cells and Recombinant Peptide Pieces on Mouse Model of DSS Colitis

2018 ◽  
Vol 27 (9) ◽  
pp. 1390-1400 ◽  
Author(s):  
Reiko Iwazawa ◽  
Sayako Kozakai ◽  
Tsukasa Kitahashi ◽  
Kentaro Nakamura ◽  
Ken-ichiro Hata

Cell therapies using adipose-derived stem cells (ADSCs) have been used to treat inflammatory bowel disease (IBD) in human and dog. We previously reported the CellSaic technique, which uses a recombinant scaffold to enhance the efficacy of cell therapy. To examine whether this technique can be applied to cell therapy for colitis, we evaluated the efficacy of CellSaic in colitis mouse models. Colitis mouse models were developed by administering dextran sulfate sodium (DSS) to C57BL/6 mice for 7 days. Then CellSaic comprising human/canine ADSCs (1.2 × 106 cells) or human/canine ADSCs only (1.2 × 106 cells) were administered to the mice. The body weights were measured, and the colon length measurements and histological evaluations were conducted at 7 days after administration. After in vitro culture of human ADSC (hADSC) CellSaic and hADSC spheroids in medium containing TNFα, the levels of the anti-inflammatory protein TSG-6 in each supernatant were measured. Furthermore, we conducted tumorigenicity and general toxicity tests of canine ADSC (cADSC) CellSaic in NOG mice for 8 weeks. In the colitis mouse models, the ADSC CellSaic group presented recovery of body weight and colon length compared with the ADSC-only group. Histological analysis showed that ADSC CellSaic decreased the number of inflammatory cells and repaired ulceration. In vitro, hADSC CellSaic secreted 3.1-fold more TSG-6 than the hADSCs. In addition, tumorigenicity and general toxicity of cADSC CellSaic were not observed. This study suggests that human and canine ADSC CellSaic has a therapeutic effect of colitis in human and dogs.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Gee-Hye Kim ◽  
Yun Kyung Bae ◽  
Ji Hye Kwon ◽  
Miyeon Kim ◽  
Soo Jin Choi ◽  
...  

Autophagy plays a critical role in stem cell maintenance and is related to cell growth and cellular senescence. It is important to find a quality-control marker for predicting senescent cells. This study verified that CD47 could be a candidate to select efficient mesenchymal stem cells (MSCs) to enhance the therapeutic effects of stem cell therapy by analyzing the antibody surface array. CD47 expression was significantly decreased during the expansion of MSCs in vitro ( p < 0.01 ), with decreased CD47 expression correlated with accelerated senescence phenotype, which affected cell growth. UCB-MSCs transfected with CD47 siRNA significantly triggered the downregulation of pRB and upregulation of pp38, which are senescence-related markers. Additionally, autophagy-related markers, ATG5, ATG12, Beclin1, and LC3B, revealed significant downregulation with CD47 siRNA transfection. Furthermore, autophagy flux following treatment with an autophagy inducer, rapamycin, has shown that CD47 is a key player in autophagy and senescence to maintain and regulate the growth of MSCs, suggesting that CD47 may be a critical key marker for the selection of effective stem cells in cell therapy.


Cell Medicine ◽  
2017 ◽  
Vol 9 (1-2) ◽  
pp. 21-33 ◽  
Author(s):  
Yasuma Yoshizumi ◽  
Hiroshi Yukawa ◽  
Ryoji Iwaki ◽  
Sanae Fujinaka ◽  
Ayano Kanou ◽  
...  

Cell therapy with adipose tissue-derived stem cells (ASCs) is expected to be a candidate for the treatment of fulminant hepatic failure (FHF), which is caused by excessive immune responses. In order to evaluate the therapeutic effects of ASCs on FHF, the in vitro and in vivo immunomodulatory effects of ASCs were examined in detail in the mouse model. The in vitro effects of ASCs were examined by assessing their influence on the proliferation of lymphomononuclear cells (LMCs) stimulated with three kinds of mitogens: phorbol 12-myristate 13-acetate (PMA) plus ionomycin, concanavalin A (ConA), and lipopolysaccharide (LPS). The proliferation of LMCs was efficiently suppressed in a dose-dependent manner by ASCs in the cases of PMA plus ionomycin stimulation and ConA stimulation, but not in the case of LPS stimulation. The in vivo effects of transplanted ASCs were examined in the murine FHF model induced by ConA administration. The ALT levels and histological inflammatory changes in the ConA-administered mice were apparently relieved by the transplantation of ASCs. The analysis of mRNA expression patterns in the livers indicated that the expressions of the cytokines such as Il-6, Il-10, Ifn-γ, and Tnf-α, and the cell surface markers such as Cd3γ, Cd4, Cd8α, Cd11b, and Cd11c were downregulated in the ASC-transplanted mice. The immunomodulatory and therapeutic effects of ASCs were confirmed in the mouse model both in vitro and in vivo. These suggest that the cell therapy with ASCs is beneficial for the treatment of FHF.


2020 ◽  
Author(s):  
Xiang Wan ◽  
Min-kai Xie ◽  
Huan Xu ◽  
Zi-wei Wei ◽  
Hai-jun Yao ◽  
...  

Abstract Rationale: Tissue engineering is a promising alternative for urethral reconstruction, and adipose-derived stem cells (ADSCs) are widely used as seeding cells. Hypoxia preconditioning can significantly enhance the therapeutic effects of ADSCs. The low oxygen tension of postoperative wound healing is inevitable and may facilitate the nutritional function of ADSCs. This study aimed to investigate if hypoxia preconditioned ADSCs, compared to normxia preconditioned ADSCs, combined with scaffold could better promote urethral reconstruction and exploring the underlying mechanism.Methods: In vitro, paracrine cytokines and secretomes that were secreted by hypoxia- or normoxia-preconditioned ADSCs were added to cultures of human umbilical vein endothelial cells (HUVECs) to measure their functions. In vivo, hypoxia- or normoxia-preconditioned ADSCs were seeded on a porous nanofibrous scaffold for urethral repair on a defect model in rabbits.Results: The in vitro results showed that hypoxia could enhance the secretion of VEGFA by ADSCs, and hypoxia-preconditioned ADSCs could enhance the viability, proliferation, migration, angiogenesis and glycolysis of HUVECs (p < 0.05). After silencing VEGFA, angiogenesis and glycolysis were significantly inhibited (p < 0.05). The in vivo results showed that compared to normoxia-preconditioned ADSCs, hypoxia-preconditioned ADSCs combined with scaffolds led to a larger urethral lumen diameter, preserved urethral morphology and enhanced angiogenesis (p < 0.05). Conclusions: Hypoxia preconditioning of ADSCs combined with scaffold could better promote urethral reconstruction by upregulating angiogenesis and glycolysis. Hypoxia-preconditioned ADSCs combined with novel scaffold may provide a promising alternative treatment for urethral reconstruction.


2013 ◽  
Vol 13 (2-3) ◽  
pp. 99-102 ◽  
Author(s):  
Keun-A. Chang ◽  
Hee Jin Kim ◽  
Yuyoung Joo ◽  
Sungji Ha ◽  
Yoo-Hun Suh

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
T. J. Moore ◽  
Heidi Abrahamse

The nervous system is essential for normal physiological function of all systems within the human body. Unfortunately the nervous system has a limited capacity for self-repair and there are a plethora of disorders, diseases, and types of trauma that affect the central and peripheral nervous systems; however, current treatment modalities are unable to remedy them. Stem cell therapy using easily accessible mesenchymal stem cells, such as those found in the adipose stroma, has come to the fore in a number of biomedical disciplines as a potential therapeutic regime. In addition to substantial research already having been conducted on thein vitrodifferentiation of stem cells for the treatment of neurological repair, numerous strategies for the induction and culture of stem cells into terminal neural lineages have also been developed. However, none of these strategies have yet been able to produce a fully functional descendent suitable for use in stem cell therapy. Due to the positive effects that low level laser irradiation has shown in stem cell studies to date, we propose that it could enhance the processes involved in the differentiation of adipose derived stem cells into neuronal lineages.


2019 ◽  
Vol 9 (4) ◽  
pp. 662-667 ◽  
Author(s):  
Faraz Sigaroodi ◽  
Hajar Shafaei ◽  
Mohammad Karimipour ◽  
Mohammad Amin Dolatkhah ◽  
Abbas Delazar

Purpose: Natural biomaterials are a key base in tissue engineering, and collagen, as the maincontent of the extracellular matrix (ECM), is frequently used in tissue engineering. Aloe verahas some therapeutic effects on ulcers, therefore, the use of this natural resource has alwaysbeen considered for improving collagen function. We aimed to evaluate the effect of Aloe vera/Collagen blended on cell viability, cell attachment, and angiogenic potential by determining ofintegrin α1β1 and platelet endothelial cell adhesion molecule (PECAM-1) genes expression inhuman adipose-derived stem cells (hASCs).Methods: In this study, hASCs after harvesting of adipose tissues from abdominal subcutaneousadipose tissue and isolation, were cultured in four groups of control, collagen gel, Aloe veragel, and Aloe vera/collagen blended in vitro environment at 24h and then cell viability wasassessed by MTT (3-(4,5-dimethylthiazol 2-yl)-2,5-diphenyltetrazolium) assay. Integrin α1β1 andPECAM-1 genes expression were evaluated by real-time RT-PCR.Results: The results of MTT showed that the combination of Aloe vera/collagen was retained thecell viability at the normal range and improved it. In real-time RT-PCR results, integrin α1β1 andPECAM-1 gene expression were increased in the Aloe vera/collagen blended group comparedto the control group.Conclusion: For tissue engineering purposes, Aloe vera improves collagen properties in theculture of hASCs by increasing the expression of the integrin α1β1 and PECAM-1 genes.<br />


2018 ◽  
Vol 6 (3) ◽  
pp. 114-119 ◽  
Author(s):  
Magdalena Rojewska ◽  
Małgorzata Popis ◽  
Maurycy Jankowski ◽  
Dorota Bukowska ◽  
Paweł Antosik ◽  
...  

AbstractStem cells are cells that have the potential to replicate and/or differentiate, becoming any tissue. This process could be theoretically repeated indefinitely and can be used to create or fix damaged parts any organ. There are many in vivo factors that cause stem cells to replicate and differentiate. Many of these interactions and mechanisms are still unknown. In vitro models have been successful in inducing stem cells to differentiate into the desired lineage using controlled methods. Recently, epithelial tissue has been successfully created using scaffolds on which stem cells are grown in vitro and then transplanted into the host. This transition creates significant problems. This is because in vitro -grown stem cells or stem cell-derived tissues are created in an isolated environment where virtually every aspect can be monitored and controlled. In vivo monitoring and controlling is significantly more difficult for a plethora of reasons. Cells in the body are constantly exposed to many signals and molecules which affect them. Many of the mechanisms behind these interactions and reactions are known but many others are not. As the corpus of knowledge grows, stem cells become closer to being applied in a clinical setting. In this paper, we review the current evidence on stem cell therapy in regenerative medicine and some of the challenges this field faces.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiang Wan ◽  
Min-kai Xie ◽  
Huan Xu ◽  
Zi-wei Wei ◽  
Hai-jun Yao ◽  
...  

Abstract Rationale Tissue engineering is a promising alternative for urethral reconstruction, and adipose-derived stem cells (ADSCs) are widely used as seeding cells. Hypoxia preconditioning can significantly enhance the therapeutic effects of ADSCs. The low oxygen tension of postoperative wound healing is inevitable and may facilitate the nutritional function of ADSCs. This study aimed to investigate if hypoxia-preconditioned ADSCs, compared to normoxia-preconditioned ADSCs, combined with scaffold could better promote urethral reconstruction and exploring the underlying mechanism. Methods In vitro, paracrine cytokines and secretomes that were secreted by hypoxia- or normoxia-preconditioned ADSCs were added to cultures of human umbilical vein endothelial cells (HUVECs) to measure their functions. In vivo, hypoxia- or normoxia-preconditioned ADSCs were seeded on a porous nanofibrous scaffold for urethral repair on a defect model in rabbits. Results The in vitro results showed that hypoxia could enhance the secretion of VEGFA by ADSCs, and hypoxia-preconditioned ADSCs could enhance the viability, proliferation, migration, angiogenesis, and glycolysis of HUVECs (p < 0.05). After silencing VEGFA, angiogenesis and glycolysis were significantly inhibited (p < 0.05). The in vivo results showed that compared to normoxia-preconditioned ADSCs, hypoxia-preconditioned ADSCs combined with scaffolds led to a larger urethral lumen diameter, preserved urethral morphology, and enhanced angiogenesis (p < 0.05). Conclusions Hypoxia preconditioning of ADSCs combined with scaffold could better promote urethral reconstruction by upregulating angiogenesis and glycolysis. Hypoxia-preconditioned ADSCs combined with novel scaffold may provide a promising alternative treatment for urethral reconstruction.


2019 ◽  
Vol 9 (11) ◽  
pp. 1485-1498 ◽  
Author(s):  
Lerato N. Madike ◽  
M. Pillay ◽  
Ketul C. Popat

Tissue engineering has been used for decades to restructure, replace and repair damaged tissue in the body. However, there are a number of challenges that have been identified, with the biggest one currently being the development of scaffolds with the ideal properties that can promote cell-scaffold interactions to enhance cell proliferation and differentiation. There is currently very little research on the incorporation of extracts of medicinal plants in scaffold fabrication with the aim of enhancing the surface properties of the scaffold. For this study, Tulbaghia violacea-based PCL scaffolds were fabricated and evaluated for their osteogenic potential on adipose derived stem cells (ADSCs) in osteogenic media. The short-term studies illustrated enhanced cell adhesion and proliferation with low levels of toxicity as well as the formation of elongated cells in the T. violacea-based scaffolds when compared to the control PCL scaffold. The long term studies indicated increased alkaline phosphate activity (ALP) in the T. violacea scaffolds when compared to PCL and overall higher levels of osteocalcin production over a period of 3 weeks. Immunofluorescence imaging of marker proteins also illustrated that the T. violacea incorporated scaffolds supported better osteocalcin production which is a specific extracellular matrix (ECM) marker for cartilaginous tissue. These results support the incorporation of T. violacea plant extracts for the enhancement of nanofiber scaffolds with the potential for tissue engineering applications.


2020 ◽  
Author(s):  
Xiang Wan ◽  
Min-kai Xie ◽  
Huan Xu ◽  
Zi-wei Wei ◽  
Hai-jun Yao ◽  
...  

Abstract Rationale: Tissue engineering is a promising alternative for urethral reconstruction, and adipose-derived stem cells (ADSCs) are widely used as seeding cells. Hypoxia preconditioning can significantly enhance the therapeutic effects of ADSCs. The low oxygen tension of postoperative wound healing is inevitable and may facilitate the nutritional function of ADSCs. This study aimed to investigate if hypoxia preconditioned ADSCs, compared to normxia preconditioned ADSCs, combined with scaffold could better promote urethral reconstruction and exploring the underlying mechanism.Methods: In vitro, paracrine cytokines and secretomes that were secreted by hypoxia- or normoxia-preconditioned ADSCs were added to cultures of human umbilical vein endothelial cells (HUVECs) to measure their functions. In vivo, hypoxia- or normoxia-preconditioned ADSCs were seeded on a porous nanofibrous scaffold for urethral repair on a defect model in rabbits.Results: The in vitro results showed that hypoxia could enhance the secretion of VEGFA by ADSCs, and hypoxia-preconditioned ADSCs could enhance the viability, proliferation, migration, angiogenesis and glycolysis of HUVECs (p < 0.05). After silencing VEGFA, angiogenesis and glycolysis were significantly inhibited (p < 0.05). The in vivo results showed that compared to normoxia-preconditioned ADSCs, hypoxia-preconditioned ADSCs combined with scaffolds led to a larger urethral lumen diameter, preserved urethral morphology and enhanced angiogenesis (p < 0.05). Conclusions: Hypoxia preconditioning of ADSCs combined with scaffold could better promote urethral reconstruction by upregulating angiogenesis and glycolysis. Hypoxia-preconditioned ADSCs combined with novel scaffold may provide a promising alternative treatment for urethral reconstruction.


Sign in / Sign up

Export Citation Format

Share Document