Influence of Silica Based Carbon Nano Tube Composites in Concrete

2017 ◽  
Vol 26 (1) ◽  
pp. 096369351702600
Author(s):  
BLP Dheeraj Swamy ◽  
Vaibhav Raghavan ◽  
K Srinivas ◽  
K Narasinga Rao ◽  
Mahadevan Lakshmanan ◽  
...  

This study focuses on the utilization of highly densified materials in cementitious composites with objectives of improving the mechanical performance and minimizing the number and size of defects. Due to their excellent mechanical properties, carbon nanotubes (CNTs) are now viewed as potential candidate for reinforcement in cement composites. The present paper reports the use of carbon nanotubes (CNTs) as reinforcement to improve the mechanical properties of portland cement paste and creating multifunctional concrete. In order to increase the bonding, and strength, a material with intermediate fineness, highly densified silica fumes, was also utilized. The densified silica fumes along with CNT are added to cement mortar in various proportions. Small-scale specimens were prepared to measure the mechanical properties as a function of nanotube concentration and distribution. Furthermore, properties like shrinkage, permeability and alkalinity of the resultant composite were also investigated. The study addresses the significance of CNT as an additive to the enhancement of properties of cement composite.

2016 ◽  
Vol 711 ◽  
pp. 232-240 ◽  
Author(s):  
Ling Shi Meng ◽  
Christopher K.Y. Leung ◽  
Geng Ying Li

This paper studies the effects of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties and durability of polymer latex-modified cement mortar. Latex-modified cementitious materials possess many advantages. However, reduction of mechanical properties due to the introduction of an amorphous structure within the cement composite has limited its application. In this study, multi-walled carbon nanotubes functionalised with carboxyl group (MWCNTs-COOH), ranging from 0% to 0.15% by weight, are added into mortar modified with 0.6 wt.% polyvinyl alcohol (PVA) latex. Mechanical properties including compressive strength and flexural strength are measured. Water absorption test and rapid chloride diffusion test are performed to assess durability performance. Results indicate considerable increase of compressive strength and flexural strength, as well as improvement in durability, by the addition of MWCNTs-COOH. With Scanning Electron Microscopy conducted on both the latex solution and cement composite, the microstructural changes resulted from MWCNT addition are revealed.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Tahereh Soleimani ◽  
Ali Akbar Merati ◽  
Masoud Latifi ◽  
Ali Akbar Ramezanianpor

The influence of adding Estabragh fibers into the cement composites of mortar on surface cracks and mechanical properties of mortar has been studied at various fiber proportions of 0.25%, 0.5%, and 0.75%. The mortar shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of mortar specimens. Although the Estabragh fibers loss their strength in an alkali environment of cement composites, the ability of Estabragh fibers to bridge on the microcracks in the mortar matrix causes a decrease in the number of cracks and in their width on the surface of the mortar samples in comparison with the plain mortar. However, considering the mechanical properties of specimens such as bending strength and compressive strength, among all fiber proportions, only the specimens with 0.25% of Estabragh fiber performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of mortar. Consequently, by adding 0.25% of Estabragh fibers to the cement mortar, a remarkable inhibition in crack generation on fiber-containing cement composite of mortar is achieved.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fakhim Babak ◽  
Hassani Abolfazl ◽  
Rashidi Alimorad ◽  
Ghodousi Parviz

We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.


2021 ◽  
Vol 25 (109) ◽  
pp. 88-97
Author(s):  
Carlos Magno Chavarry Vallejos ◽  
Liliana Janet Chavarría Reyes ◽  
Xavier Antonio Laos Laura ◽  
Andrés Avelino Valencia Gutiérrez ◽  
Enriqueta Pereyra Salardi ◽  
...  

El presente artículo tiene como objetivo determinar la influencia de la adición del dióxido de titanio (TiO2) en el mortero de cemento Pórtland Tipo I. La investigación es descriptiva, correlacional, explicativo, con diseño experimental, longitudinal, prospectivo y estudio de cohorte. Se elaboró una mezcla patrón y tres mezclas de mortero con 5%, 7.5% y 10% de contenido de TiO2 como reemplazo del volumen de cemento para las propiedades autolimpiantes se realizó el ensayo de rodamina e intemperismo. La incorporación de dióxido de titanio disminuyó la resistencia a la compresión, incrementó la fluidez y tasa de absorción de agua; la prueba de rodamina dio que el mortero sin actividad fotocatalítico no contenía TiO2 porque no cumple con los factores de fotodegradación R4 y R26. Mediante la exposición de paneles al intemperismo favoreciendo la propiedad autolimpiante de los morteros con adición de TiO2 (5%). Palabras Clave: Actividad foto catalítico, dióxido de titanio, factores de fotodegradación, propiedades mecánicas y autolimpiante. Referencias [1]E. Medina and H. Pérez, “Influencia del fotocatalizador dióxido de titanio en las propiedades autolimpiables y mecánicas del mortero de cemento - arena 1:4 - Cajamarca,” Universidad Nacional de Cajamarca, 2017. [2]G. Abella, “Mejora de las propiedades de materiales a base de cemento que contienen TiO 2 : propiedades autolimpiantes,” Universidad Politécnica de Madrid, 2015. [3]J. Gonzalez, “El Dióxido de titanio como material fotocatalitico y su influencia en la resistencia a la compresión en Morteros,” Universidad de San Buenaaventura Seccional Bello, 2015. [4]D. Jimenez and J. Moreno, “Efecto del reemplazo de cemento portland por el dioido de titanio en las propiedades mecanicas del mortero,” Pontificia Universidad Javeriana, 2016. [5]L. Wang, H. Zhang, and Y. Gao, “Effect of TiO2 nanoparticles on physical and mechanical properties of cement at low temperatures,” Adv. Mater. Sci. Eng., 2018, doi: 10.1155/2018/8934689. [6]Comisión de Normalización y de Fiscalización de Barreras Comerciales no Arancelares, Norma Técnica Peruana. Perú, 2013, p. 29. [7]ASTM Internacional, “ASTM C150,” 2021. https://www.astm.org/Database.Cart/Historical/C150-07-SP.htm. [8]M. Issa, “( current astm c150 / aashto m85 ) with limestone and process addition ( ASTM C465 / AASHTO M327 ) on the performance of concrete for pavement and Prepared By,” 2014. [9]S. Zailan, N. Mahmed, M. Abdullah, A. Sandu, and N. Shahedan, “Review on characterization and mechanical performance of self-cleaning concrete,” MATEC Web Conf., vol. 97, pp. 1–7, 2017, doi: 10.1051/matecconf/20179701022. [10]C. Chavarry, L. Chavarría, A. Valencia, E. Pereyra, J. Arieta, and C. Rengifo, “Hormigón reforzado con vidrio molido para controlar grietas y fisuras por contracción plástica,” Pro Sci., vol. 4, no. 31, pp. 31–41, 2020, doi: 10.29018/issn.2588-1000vol4iss31.2020pp31-41. [11]D. Tobaldi, “Materiali ceramici per edilizia con funzionalità fotocatalitica,” Università di Bologna, 2009. [12]Norme UNI, “Norma Italiana UNI 11259,” 2016. http://store.uni.com/catalogo/uni-11259-2008?josso_back_to=http://store.uni.com/josso-security-check.php&josso_cmd=login_optional&josso_partnerapp_host=store.uni.com. [13]E. Grebenisan, H. Szilagyi, A. Hegyi, C. Mircea, and C. Baera, “Directory lines regarding the desing and production of self-cleaning cementitious composites,” Sect. Green Build. Technol. Mater., vol. 19, no. 6, 2019. [14]M. Kaszynska, “The influence of TIO2 nanoparticles on the properties of self-cleaning cement mortar,” Int. Multidiscip. Sci. GeoConference SGEM, pp. 333–341, 2018.


2015 ◽  
Vol 824 ◽  
pp. 179-183
Author(s):  
Dana Koňáková ◽  
Eva Vejmelková

In this article selected properties of a glass and polypropylene fibre reinforced cement composite materials are studied. They are determined either after preceding thermal treatment or during thermal loading. Basic physical properties (in concrete terms bulk density, matrix density and open porosity), mechanical properties (in concrete terms tensile strength and bending strength) are determined after subjecting the specimens to the pre-heating temperatures of 600°C, 800°C and 1000°C. The linear thermal expansion coefficient is measured directly as functions of temperature up to 1000°C. The critical temperature for the glass and polypropylene fibre reinforced cement composite when most properties are worsening in a significant way is found apparently 500°C.


2020 ◽  
Vol 10 (23) ◽  
pp. 8705
Author(s):  
Gankhuyag Burtuujin ◽  
Dasom Son ◽  
Indong Jang ◽  
Chongku Yi ◽  
Hyerin Lee

Rebar embedded inside reinforced concrete structures becomes corroded due to various factors. However, few studies have focused on the corrosion of pre-rusted rebar embedded in cement composites, and the findings reported thus far are inconsistent. Therefore, in this study, an experimental program was undertaken to examine the effect of pre-rusting on the further corrosion of reinforcements in cement composites. Pre-rust was induced using two different solutions (CaCl2 and HCl). The corrosion rate in the cement composite was analyzed using the half-cell potential and polarization resistance methods. In addition, scanning electron microscopy with energy-dispersive X-ray analysis and X-ray diffraction analysis were used to examine the morphology of the rust. The results show that the corrosion rate of the rebar embedded in the cement composite can be increased by more than 3.8 times depending on the pre-rust conditions (RE: 0.0009 mm/year, HCl: 0.0035 mm/year). In addition, we found that the corrosion products in the pre-rusted layer were comparable to those of the rebar corroded in the marine atmosphere.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4865
Author(s):  
Elżbieta Horszczaruk ◽  
Paweł Łukowski ◽  
Cyprian Seul

In recent years, a nano-modification of the cement composites allowed to develop a number of new materials. The use of even small amount of nano-admixture makes possible not only to improve the physico-mechanical properties of the cement materials, but also to obtain the composite with high usability, optimised for the given application. The basic problem of nano-modification of the cement composites remains the effectiveness of dispersing the nanomaterials inside the cement matrix. This paper deals with the effect of the type and size of the nanoparticles on the tendency to their agglomeration in the cement matrix. The main techniques and methods of dispersing the nanomaterials are presented. It has been demonstrated, on the basis of the results of testing of three nanomodifiers of 0D type (nano-SiO2, nano-Fe3O4 and nano-Pb3O4), how the structure and properties of the nanomaterial affect the behaviour of the particles when dissolving in the mixing water and applying a superplasticiser. The nanoparticles had similar size of about 100 nm but different physico-chemical properties. The methods of dispersing covered the use of high-speed mechanical stirring and ultrasonication. The influence of the method of nano-modifier dispersing on the mechanical performance of the cement composite has been presented on the basis of the results of testing the cement mortars modified with 3% admixture of nano-SiO2.


2013 ◽  
Vol 818 ◽  
pp. 124-131
Author(s):  
Assed N. Haddad ◽  
Jorge F. de Morais ◽  
Ana Catarina J. Evangelista

Nanomaterials could change the face of modern construction because they are more resistant, more durable and have notable features. Concrete is a material widely used in construction industry worldwide. Carbon nanotube has been considered a new and outstanding material in nanoscience field with great potential application in the construction industry. The study presented in this paper, aims at assessing how carbon nanotubes can affect cement composites and so the concrete, in terms of microstructure and physical-mechanical properties. Three different ratios of carbon nanotubes have been searched: 0.20%, 0.40% and 0.60%. To evaluate the mechanical properties of the samples, destructive and non-destructive tests were carried out to obtain compressive strength, tensile strength by diametrical compression, dynamic modulus of elasticity as well as the determination of their deformation properties. This work also aims to motivate entrepreneurs and professionals in the sector of civil engineering on the advantages of the application of nanotechnology in construction, as well as providing information to the scientific and technological community in general.


1987 ◽  
Vol 114 ◽  
Author(s):  
I. Odler

ABSTRACTA series of fiber-cement composite materials was prepared by dispersing different amounts of polyacrylnitril (PAN) fibers in portland cement suspensions of variable water/solid ratios. The samples were used to study the effect of the volume of fibers and the water-cement ratio on the physico-mechanical properties of the material. The distribution of the fibers within the cementitious matrix and the fracture mechanism were studied by SEM and compared with those existing in glass fiber-cement composites.


2015 ◽  
Vol 815 ◽  
pp. 164-169
Author(s):  
Ng Hooi Jun ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Husin ◽  
Soo Jin Tan ◽  
Mohd Firdaus Omar

Utilization and suitability of bottom ash in Portland cement have been increasing significantly in recent year. Bottom ash has substantial effects on mechanical properties with different composition of replacement in mixture of bottom ash and Portland cement. Bottom ash was used to determine the feasibility of the substitution as recycling product from industry depending on the percentage of the bottom ash. On the other hand, bottom ash offers a better solution for maintaining materials characteristic of Portland cement mortar and also provide beneficial mechanical performance. The result of using bottom ash in Portland cement mortar showed that it could make better the mechanical properties and hence disposed bottom ash wastes safely in technical, economic and environmental methods.


Sign in / Sign up

Export Citation Format

Share Document