Aromatic Diamines as Cooperative Compatibilizers and Impact Modifiers in LDPE/HIPS Blends

2005 ◽  
Vol 13 (3) ◽  
pp. 313-320
Author(s):  
J. Pospíšil ◽  
D. Michálková ◽  
I. Fortelný ◽  
Z. Kruliš ◽  
M. Šlouf

Mechanical recycling emerged among other plastics recycling approaches as a profitable method. Its feasibility has enhanced by understanding of reasons of lower mechanical properties of aged materials in comparison with virgin materials, and by a proper exploitation of the knowledge of compatibilization and stabilization additives for upgrading of reused materials. This study deals with low density polyethylene (LDPE). Impact strength of recycled or pre-aged (recyclate model) LDPE / high-impact polystyrene (HIPS) blends compatibilized with styrene-butadiene copolymer / ethylene-propylene elastomer was enhanced and fineness of the phase structure of the system was improved by using N,N'-disubstituted 1,4-phenylenediamine co-additives. Mechanism of the strong synergistic compatibilization effect was explained by LDPE grafting with styrene-butadiene copolymer mediated by the bifunctional amine additive.

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1821
Author(s):  
Ildar I. Salakhov ◽  
Nadim M. Shaidullin ◽  
Anatoly E. Chalykh ◽  
Mikhail A. Matsko ◽  
Alexey V. Shapagin ◽  
...  

Low-temperature properties of high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and their blends were studied. The analyzed low-temperature mechanical properties involve the deformation resistance and impact strength characteristics. HDPE is a bimodal ethylene/1-hexene copolymer; LDPE is a branched ethylene homopolymer containing short-chain branches of different length; LLDPE is a binary ethylene/1-butene copolymer and an ethylene/1-butene/1-hexene terpolymer. The samples of copolymers and their blends were studied by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), 13С NMR spectroscopy, and dynamic mechanical analysis (DMA) using testing machines equipped with a cryochamber. It is proposed that such parameters as “relative elongation at break at −45 °C” and “Izod impact strength at −40 °C” are used instead of the ductile-to-brittle transition temperature to assess frost resistance properties because these parameters are more sensitive to deformation and impact at subzero temperatures for HDPE. LLDPE is shown to exhibit higher relative elongation at break at −45 °C and Izod impact strength at −20 ÷ 60 °C compared to those of LDPE. LLDPE terpolymer added to HDPE (at a content ≥ 25 wt.%) simultaneously increases flow properties and improves tensile properties of the blend at −45 °C. Changes in low-temperature properties as a function of molecular weight, MWD, crystallinity, and branch content were determined for HDPE, LLDPE, and their blends. The DMA data prove the resulting dependences. The reported findings allow one to understand and predict mechanical properties in the HDPE–LLDPE systems at subzero temperatures.


2018 ◽  
Vol 32 (3) ◽  
pp. 297-311 ◽  
Author(s):  
Yousef Ahmad Mubarak ◽  
Raghda Talal Abdulsamad

This work was intended to provide an understanding of the effect of microcrystalline cellulose (MCC) on the mechanical properties of low-density polyethylene (LDPE). The impact resistance and the tensile properties of low-density LDPE/MCC composites were investigated. The weight fraction of MCC was varied at (0, 0.5, 1, 2.5, 5, 10, 20, and 30 wt%). The obtained blends were then used to prepare the required tensile and impact testing samples by hot compression molding technique. It has been found that MCC has a strong influence on the mechanical properties of LDPE. At a low MCC weight fraction, there was a little improvement in the ultimate strength, fracture stress, and elongation at break, but at a high MCC weight fraction, the tensile properties were deteriorated and reduced significantly. The addition of 1 wt% MCC to LDPE enhanced the mentioned properties by 10, 25, and 6%, respectively. While at 30 wt% MCC, these properties were lowered by 36, 25, and 96%. The elastic modulus of LDPE composites was improved on all MCC weight fractions used in the study, at 20 wt% MCC, an increase in the elastic modulus by 12 folds was achieved. On the other hand and compared with the impact strength of pure LDPE, the addition of MCC particles enhanced the impact strength, the highest value obtained was for LDPE composites filled with 10 wt% MCC where the impact strength enhanced by two folds.


2015 ◽  
Vol 35 (8) ◽  
pp. 793-804 ◽  
Author(s):  
Md. Dalour Hossen Beg ◽  
Shaharuddin Bin Kormin ◽  
Mohd Bijarimi ◽  
Haydar U. Zaman

Abstract The aim of this research is to investigate the effects of different thermoplastic starches and starch contents on the physico-mechanical and morphological properties of new polymeric-based composites from low density polyethylene (LDPE) and thermoplastic starches. Different compositions of thermoplastic starches (5–40 wt%) and LDPE were melt blended by extrusion and injection molding. The resultant materials were characterized with respect to the following parameters, i.e., melt flow index (MFI), mechanical properties (tensile, flexural, stiffness and impact strength) and water absorption. Scanning electron microscopy (SEM) was also used in this study for evaluating blend miscibility. MFI values of all blends decreased as the starch content increased, while the sago starch formulation showed a higher MFI value than others. The incorporation of fillers into LDPE matrix resulted in an increased in tensile modulus, flexural strength, flexural modulus and slightly decreased tensile strength and impact strength. However, sago starch filled composites exhibited better mechanical properties as compared to other starches. The SEM results revealed that the miscibility of such blends is dependent on the type of starch used. The water absorption increased with immersion time and the thermoplastic sago starch samples showed the lowest percentage of water absorption compared with other thermoplastic starches.


2013 ◽  
Vol 739 ◽  
pp. 38-41
Author(s):  
Yi Chen ◽  
Yue Peng ◽  
Wen Yong Liu ◽  
Guang Sheng Zeng ◽  
Xiang Gang Li ◽  
...  

Polycarbonate/poly (lactic acid)/(PC/PLA) blend is a kind of novel potential material for introducing the degradability of PLA to high performance PC. However, the bad compatibility between PC and PLA results in poor impact resistance and strength, which limits its applications. For resolving the problem, linear low density polyethylene (LLDPE) was added into blend to improve the mechanical properties, especially the toughness. Meantime, nanosized montmorillonite was also used as an additive for modifying the blend. The results showed that the the tensile and impact strength, the elongation at break of PC/PLA all be improved with the increase of LLDPE, the nanosized montmorillonite could also increase the strength of blends when the content is lower than wt5% of blends.


2011 ◽  
Vol 217-218 ◽  
pp. 1245-1248 ◽  
Author(s):  
Hong Sheng Tan ◽  
Yuan Zhang Yu ◽  
Jing Zhang

The mechanical properties of coir fiber/line low density polyethylene (LLDPE) bio-composites were studied and micrographs of fracture surface of impact specimens for the composites were analyzed by scanning electron microscope (SEM). The flexural and impact strength of the composite with a compatilizer were higher than that of the composite without a compatilizer. The results of interface morphology of the composites with a compatilizer show better interfacial adhesion than that of the composites without one by SEM. That compatibility between the fiber and LLDPE resin is improved on, which is essential reason of rigidity and toughness increase of the composites.


Author(s):  
Felicia Stan ◽  
Nicoleta-Violeta Stanciu ◽  
Catalin Fetecau ◽  
Ionut-Laurentiu Sandu

Abstract In this paper, the impact of recycling and remanufacturing on the behavior of low-density polyethylene/multi-walled carbon nanotube (LDPE/MWCNT) composites is investigated. LDPE/MWCNT composites with 0.1–5 wt.%, previously manufactured by injection molding, were mechanically recycled and remanufactured by injection molding and 3D filament extrusion, and the rheological, electrical, and mechanical properties were analyzed and compared with those of virgin composites under the same conditions. Experimental results demonstrate that the recycled LDPE/MWCNT composites have similar rheological, electrical, and mechanical properties to virgin composites, if not better. Therefore, the recycled LDPE/MWCNT composites have a great potential for being used in engineering applications, while reducing the environmental impact.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Felicia Stan ◽  
Nicoleta-Violeta Stanciu ◽  
Catalin Fetecau ◽  
Ionut-Laurentiu Sandu

In this paper, the impact of recycling and remanufacturing on the behavior of low-density polyethylene/multi-walled carbon nanotube (LDPE/MWCNT) composites is investigated. LDPE/MWCNT composites with 0.1–5 wt%, previously manufactured by injection molding, were mechanically recycled and remanufactured by injection molding and 3D filament extrusion, and the rheological, electrical, and mechanical properties were analyzed and compared with those of virgin composites under the same conditions. Experimental results demonstrate that the recycled LDPE/MWCNT composites have similar rheological, electrical, and mechanical properties as that of virgin composites, if not better. Therefore, the recycled LDPE/MWCNT composites have a great potential for being used in engineering applications, while reducing the environmental impact.


2022 ◽  
Vol 58 (4) ◽  
pp. 210-215
Author(s):  
Antypas Imad Rezakalla ◽  
Savostina Tatiana Petrovna

High and low density polyethylene materials constitute about 48% of total weight of plastics waste in Europe, that depends on the frequent use of these materials in packaging applications. This paper analyze the recycling effect on the mechanical properties of high and low density polyethylene (HDPE and LDPE). A mechanical recycling process was tested for the plastics waste of high and low density polyethylene, then a tensile and impact tests were performed on different mixing ratios for each of the both materials ranging from 100% of the virgin material and up to 100% of the recycled material with a difference of 10% of the sample to the other. This paper discusses the tensile properties of tensile stress at the fracture, elongation and modulus of elasticity and the impact test results for HDPE and LDPE were compared with each other.


1993 ◽  
Vol 58 (11) ◽  
pp. 2642-2650 ◽  
Author(s):  
Zdeněk Kruliš ◽  
Ivan Fortelný ◽  
Josef Kovář

The effect of dynamic curing of PP/EPDM blends with sulfur and thiuram disulfide systems on their mechanical properties was studied. The results were interpreted using the knowledge of the formation of phase structure in the blends during their melt mixing. It was shown, that a sufficiently slow curing reaction is necessary if a high impact strength is to be obtained. Only in such case, a fine and homogeneous dispersion of elastomer can be formed, which is the necessary condition for high impact strength of the blend. Using an inhibitor of curing in the system and a one-step method of dynamic curing leads to an increase in impact strength of blends. From the comparison of shear modulus and impact strength values, it follows that, at the stiffness, the dynamically cured blends have higher impact strength than the uncured ones.


Sign in / Sign up

Export Citation Format

Share Document