Composition of lymphocyte subpopulations in normal and mildly reactive peripheral lymph nodes in cats

2021 ◽  
pp. 1098612X2110053
Author(s):  
Barbara C Rütgen ◽  
Elisabeth Baszler ◽  
Nicole Weingand ◽  
Birgitt Wolfesberger ◽  
Daniel Baumgartner ◽  
...  

Objectives Flow cytometric (FCM) immunophenotyping of lymphoid tissue aspirates is an available adjunct for feline lymphoma diagnostics. Reference data have only been established for feline peripheral blood. Studies investigating the composition of normal and mildly reactive feline lymph nodes (LNs) are lacking. The aim of this prospective study was to establish reference data for lymphocyte subpopulations in normal and mildly reactive feline peripheral LNs using a standardised multicolour panel of antibodies. Methods Macroscopically inconspicuous mandibular and/or popliteal LNs from 31 adult cats, which were euthanased for reasons other than haematological diseases, were excised and processed within 5 h after death. Multicolour flow cytometry using eight different feline-specific, anti-canine and human cross-reactive monoclonal antibodies used in current diagnostic marker panels was performed after cytological exclusion of pathological states and complemented by lymphocyte clonality testing, histopathology and immunohistochemistry (IHC) to ensure the absence of lymphoid disease. Results Of 31 cats, the immunophenotyping data of 24 individuals could be included as histopathology and clonality testing excluded a pathological condition. Lymphocyte populations showed the following positive antibody reactions: CD18+ 86.3% ± 13.86%, CD3+ 54.81% ± 11.10%, CD5+ 57.39% ± 12.66%, CD21+ 40.42% ± 12.40%, CD79alphacy+ (CD79αcy) 30.41% ± 13.49% and CD14+ 0.75% ± 1.35%. There were 30.88% ± 13.48% CD4+ and 12.91% ± 6.68% CD8+ cells. Cytology revealed a mixed population of mostly lymphoid cells in all samples. The absence of a monoclonal/oligoclonal neoplastic population was confirmed by lymphocyte clonality testing. Histopathology and IHC showed a normal or mildly reactive pattern in all cases. Conclusions and relevance This study establishes FCM immunophenotyping data of lymphocyte populations of normal and mildly reactive feline peripheral LNs. For the first time, anti-CD5, CD4, CD8 and CD21 reference data in normal and mildly reactive feline peripheral LNs are presented. CD18, CD3, CD14 and CD79αcy have been used to establish reference data for the first time in any feline material.

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Emma C. Mackley ◽  
Stephanie Houston ◽  
Clare L. Marriott ◽  
Emily E. Halford ◽  
Beth Lucas ◽  
...  

Abstract Presentation of peptide:MHCII by RORγ-expressing group 3 innate lymphoid cells (ILC3s), which are enriched within gut tissue, is required for control of CD4 T-cell responses to commensal bacteria. It is not known whether ILC populations migrate from their mucosal and peripheral sites to local draining secondary lymphoid tissues. Here we demonstrate that ILC3s reside within the interfollicular areas of mucosal draining lymph nodes, forming a distinct microenvironment not observed in peripheral lymph nodes. By photoconverting intestinal cells in Kaede mice we reveal constitutive trafficking of ILCs from the intestine to the draining mesenteric lymph nodes, which specifically for the LTi-like ILC3s was CCR7-dependent. Thus, ILC populations traffic to draining lymph nodes using different mechanisms.


1993 ◽  
Vol 123 (6) ◽  
pp. 1889-1898 ◽  
Author(s):  
S S Evans ◽  
R P Collea ◽  
M M Appenheimer ◽  
S O Gollnick

The L-selectin homing receptor expressed by lymphocytes mediates the initial attachment of these cells to high endothelial venules within peripheral lymph nodes. This adhesive interaction is required for the migration of B and T lymphocytes from the blood into peripheral lymph nodes. There is currently little information regarding the nature of the factors involved in the regulation of the synthesis and expression of L-selectin by lymphocytes. In this report, the immunomodulatory cytokine interferon-alpha (IFN-alpha) was shown to markedly upregulate the surface density of L-selectin in the established human B lymphoid Daudi cell line and in a subpopulation of tissue-derived human B lymphoid cells. Other cytokines such as IFN-gamma, tumor necrosis factor-alpha, interleukin (IL)-1 beta, IL-2, IL-4, IL-6, and low molecular weight B cell growth factor did not affect L-selectin surface expression in the model Daudi B cell line. Upregulation of L-selectin surface density in IFN-alpha-treated Daudi B cells correlated directly with an increase in L-selectin mRNA steady state levels and enhanced L-selectin-dependent binding to a carbohydrate-based ligand, phosphomonoester core polysaccharide. Regulation of L-selectin mRNA by IFN-alpha had characteristics similar to that of classical IFN-stimulated genes including rapid kinetics of induction, protein-synthesis-independent induction, and sensitivity to tyrosine-kinase inhibitors. IFN-alpha did not upregulate L-selectin mRNA levels or surface expression in an IFN-resistant Daudi subclone which exhibits a defect in the signal transduction pathway required for the transcriptional induction of IFN-stimulated genes. These data demonstrate a fundamental role for IFN-alpha in regulating L-selectin synthesis and expression in human B lymphoid cells and suggest a mechanism whereby this cytokine regulates the regional trafficking of B cells to peripheral lymph nodes.


Author(s):  
Verena Kästele ◽  
Johannes Mayer ◽  
Edward S. Lee ◽  
Natalie Papazian ◽  
John J. Cole ◽  
...  

AbstractInnate lymphoid cells (ILCs) are enriched in mucosae and have been described as tissue-resident. Interestingly, ILCs are also present within lymph nodes (LNs), in the interfollicular regions, the destination for lymph-migratory cells. We have previously shown that LN ILCs are supplemented by peripheral tissue-derived ILCs. Using thoracic duct cannulations, we here enumerate the intestinal lymph ILCs that traffic from the intestine to the mesenteric LNs (MLNs). We provide, for the first time, a detailed characterisation of these lymph-migratory ILCs. We show that all ILC subsets migrate in lymph, and while global transcriptional analysis reveals a shared signature with tissue-resident ILCs, lymph ILCs express migration-associated genes including S1PRs, SELL (CD62L) and CCR7. Interestingly, we discovered that while Salmonella Typhimurium infections do not increase the numbers of migrating ILCs, infection changes their composition and cytokine profile. Infection increases the proportions of RORyt+ T-bet+ ILCs, levels of IFNγ, and IFNγ/GM-CSF co-expression. Infection-induced changes in migratory ILCs are reflected in colon-draining MLN ILCs, where RORyt+ T-bet+ ILCs accumulate and display corresponding increased cytokine expression. Thus, we reveal that ILCs respond rapidly to intestinal infection and can migrate to the MLN where they produce cytokines.


1970 ◽  
Vol 132 (4) ◽  
pp. 702-720 ◽  
Author(s):  
Celso Bianco ◽  
Richard Patrick ◽  
Victor Nussenzweig

A population of lymphoid cells from several animal species, including man, was identified through a membrane receptor which binds sheep red blood cells treated with antibody and complement. When cells from different lymphoid organs were incubated with EAC at 37°C, only part of the lymphocytes (named CRL) bound EAC and formed rosettes, and this interaction was shown to be C3-dependent. Mouse lymphoid cells could be specifically depleted of CRL by allowing them first to interact with EAC and then submitting the mixture to ultracentrifugation in a gradient of BSA. After ultracentrifugation, a population of cells containing 95% or more of non-CRL were recovered from the upper layers of the gradient. In addition to their different abilities to bind EAC, CRL and non-CRL from mouse lymphoid organs could be distinguished by the following properties: (a) CRL adhered preferentially to nylon wool at 37°C in the presence of mouse serum. (b) After differential flotation in a gradient of BSA, a significantly higher proportion of CRL were recovered from the upper layers of the gradient. (c) The population of CRL contained most of the lymphocytes bearing immunoglobulin determinants on their membranes. (d) The distribution of CRL was quite different among lymphocytes obtained from various lymphoid organs, and they were never found in the thymus. (e) The membrane receptor for EAC was not detected in plaque-forming cells of mice which had been previously immunized with burro red cells. CRL and non-CRL could not be distinguished by their life span, as they were found in similar proportions among long-lived and short-lived lymphocytes from mouse peripheral lymph nodes. The function of this receptor on the membrane of certain lymphoid cells may be related to (a) the trapping and localization of antigen in lymphoid organs or (b) the localization of lymphoid cells in inflammatory sites.


2016 ◽  
Vol 79 (6) ◽  
pp. 1032-1035 ◽  
Author(s):  
T. S. EDRINGTON ◽  
G. H. LONERAGAN ◽  
K. J. GENOVESE ◽  
D. L. HANSON ◽  
D. J. NISBET

ABSTRACT Utilizing a transdermal method of inoculation developed in our laboratory, the duration of infection of Salmonella in the peripheral lymph nodes of steers was examined. Thirty-six Holstein steers (mean body weight of 137 kg) were inoculated with Salmonella Montevideo (day 0) on each lower leg and both sides of the back and abdomen. Calves were euthanized beginning at 6 h and subsequently on each of days 1, 2, 4, 7, 9, 11, 14, and 21 postinoculation (four animals each time). The subiliac, popliteal, and superficial cervical (prescapular) lymph nodes were collected and cultured (quantitatively and qualitatively) for the challenge strain of Salmonella. The challenge strain was detected via direct culture within the lymph nodes at 6 h postinoculation and on each subsequent necropsy date. Salmonella levels in lymph node were 0.8 to 1.8 log CFU/g. Lymph nodes were generally positive after enrichment culture throughout the experiment. Salmonella elimination appeared to begin approximately 14 days postinoculation. However, elimination was not completed by day 21; therefore, a second experiment was conducted identical to the first except that the time from inoculation to necropsy was extended. Salmonella was recovered via direct culture on each of the necropsy days, and results in general were similar to those of experiment I, except that on days 20, 24, and 28 isolates from serogroups C2 and E1 were identified in addition to the inoculation strain C1 in multiple animals. The data from both experiments indicate that after a single inoculation event, Salmonella would be completely cleared by approximately 28 days. Further research with expanded times between inoculation and necropsy is required for verification.


Blood ◽  
2013 ◽  
Vol 122 (15) ◽  
pp. 2591-2599 ◽  
Author(s):  
Simon Heidegger ◽  
David Anz ◽  
Nicolas Stephan ◽  
Bernadette Bohn ◽  
Tina Herbst ◽  
...  

Key Points Systemic virus infection leads to rapid disruption of the Peyer’s patches but not of peripheral lymph nodes. Virus-associated innate immune activation and type I IFN release blocks trafficking of B cells to Peyer’s patches.


Sign in / Sign up

Export Citation Format

Share Document